peekaboo-demo / dino /run_with_submitit.py
hasibzunair's picture
add dino
2895c00
raw
history blame
4.48 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A script to run multinode training with submitit.
Almost copy-paste from https://github.com/facebookresearch/deit/blob/main/run_with_submitit.py
"""
import argparse
import os
import uuid
from pathlib import Path
import main_dino
import submitit
def parse_args():
parser = argparse.ArgumentParser(
"Submitit for DINO", parents=[main_dino.get_args_parser()]
)
parser.add_argument(
"--ngpus", default=8, type=int, help="Number of gpus to request on each node"
)
parser.add_argument(
"--nodes", default=2, type=int, help="Number of nodes to request"
)
parser.add_argument("--timeout", default=2800, type=int, help="Duration of the job")
parser.add_argument(
"--partition", default="learnfair", type=str, help="Partition where to submit"
)
parser.add_argument(
"--use_volta32", action="store_true", help="Big models? Use this"
)
parser.add_argument(
"--comment",
default="",
type=str,
help="Comment to pass to scheduler, e.g. priority message",
)
return parser.parse_args()
def get_shared_folder() -> Path:
user = os.getenv("USER")
if Path("/checkpoint/").is_dir():
p = Path(f"/checkpoint/{user}/experiments")
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file():
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder()), exist_ok=True)
init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import main_dino
self._setup_gpu_args()
main_dino.train_dino(self.args)
def checkpoint(self):
import os
import submitit
self.args.dist_url = get_init_file().as_uri()
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
from pathlib import Path
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(
str(self.args.output_dir).replace("%j", str(job_env.job_id))
)
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def main():
args = parse_args()
if args.output_dir == "":
args.output_dir = get_shared_folder() / "%j"
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
kwargs = {}
if args.use_volta32:
kwargs["slurm_constraint"] = "volta32gb"
if args.comment:
kwargs["slurm_comment"] = args.comment
executor.update_parameters(
mem_gb=40 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs,
)
executor.update_parameters(name="dino")
args.dist_url = get_init_file().as_uri()
trainer = Trainer(args)
job = executor.submit(trainer)
print(f"Submitted job_id: {job.job_id}")
print(f"Logs and checkpoints will be saved at: {args.output_dir}")
if __name__ == "__main__":
main()