Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
A script to run multinode training with submitit. | |
Almost copy-paste from https://github.com/facebookresearch/deit/blob/main/run_with_submitit.py | |
""" | |
import argparse | |
import os | |
import uuid | |
from pathlib import Path | |
import main_dino | |
import submitit | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
"Submitit for DINO", parents=[main_dino.get_args_parser()] | |
) | |
parser.add_argument( | |
"--ngpus", default=8, type=int, help="Number of gpus to request on each node" | |
) | |
parser.add_argument( | |
"--nodes", default=2, type=int, help="Number of nodes to request" | |
) | |
parser.add_argument("--timeout", default=2800, type=int, help="Duration of the job") | |
parser.add_argument( | |
"--partition", default="learnfair", type=str, help="Partition where to submit" | |
) | |
parser.add_argument( | |
"--use_volta32", action="store_true", help="Big models? Use this" | |
) | |
parser.add_argument( | |
"--comment", | |
default="", | |
type=str, | |
help="Comment to pass to scheduler, e.g. priority message", | |
) | |
return parser.parse_args() | |
def get_shared_folder() -> Path: | |
user = os.getenv("USER") | |
if Path("/checkpoint/").is_dir(): | |
p = Path(f"/checkpoint/{user}/experiments") | |
p.mkdir(exist_ok=True) | |
return p | |
raise RuntimeError("No shared folder available") | |
def get_init_file(): | |
# Init file must not exist, but it's parent dir must exist. | |
os.makedirs(str(get_shared_folder()), exist_ok=True) | |
init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" | |
if init_file.exists(): | |
os.remove(str(init_file)) | |
return init_file | |
class Trainer(object): | |
def __init__(self, args): | |
self.args = args | |
def __call__(self): | |
import main_dino | |
self._setup_gpu_args() | |
main_dino.train_dino(self.args) | |
def checkpoint(self): | |
import os | |
import submitit | |
self.args.dist_url = get_init_file().as_uri() | |
print("Requeuing ", self.args) | |
empty_trainer = type(self)(self.args) | |
return submitit.helpers.DelayedSubmission(empty_trainer) | |
def _setup_gpu_args(self): | |
import submitit | |
from pathlib import Path | |
job_env = submitit.JobEnvironment() | |
self.args.output_dir = Path( | |
str(self.args.output_dir).replace("%j", str(job_env.job_id)) | |
) | |
self.args.gpu = job_env.local_rank | |
self.args.rank = job_env.global_rank | |
self.args.world_size = job_env.num_tasks | |
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") | |
def main(): | |
args = parse_args() | |
if args.output_dir == "": | |
args.output_dir = get_shared_folder() / "%j" | |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) | |
executor = submitit.AutoExecutor(folder=args.output_dir, slurm_max_num_timeout=30) | |
num_gpus_per_node = args.ngpus | |
nodes = args.nodes | |
timeout_min = args.timeout | |
partition = args.partition | |
kwargs = {} | |
if args.use_volta32: | |
kwargs["slurm_constraint"] = "volta32gb" | |
if args.comment: | |
kwargs["slurm_comment"] = args.comment | |
executor.update_parameters( | |
mem_gb=40 * num_gpus_per_node, | |
gpus_per_node=num_gpus_per_node, | |
tasks_per_node=num_gpus_per_node, # one task per GPU | |
cpus_per_task=10, | |
nodes=nodes, | |
timeout_min=timeout_min, # max is 60 * 72 | |
# Below are cluster dependent parameters | |
slurm_partition=partition, | |
slurm_signal_delay_s=120, | |
**kwargs, | |
) | |
executor.update_parameters(name="dino") | |
args.dist_url = get_init_file().as_uri() | |
trainer = Trainer(args) | |
job = executor.submit(trainer) | |
print(f"Submitted job_id: {job.job_id}") | |
print(f"Logs and checkpoints will be saved at: {args.output_dir}") | |
if __name__ == "__main__": | |
main() | |