Spaces:
Sleeping
Sleeping
""" | |
Code adapted from TokenCut: https://github.com/YangtaoWANG95/TokenCut | |
""" | |
import PIL.Image as Image | |
import numpy as np | |
from scipy import ndimage | |
from scipy.sparse import diags, csr_matrix | |
from scipy.sparse.linalg import cg | |
RGB_TO_YUV = np.array( | |
[[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5], [0.5, -0.418688, -0.081312]] | |
) | |
YUV_TO_RGB = np.array([[1.0, 0.0, 1.402], [1.0, -0.34414, -0.71414], [1.0, 1.772, 0.0]]) | |
YUV_OFFSET = np.array([0, 128.0, 128.0]).reshape(1, 1, -1) | |
MAX_VAL = 255.0 | |
def rgb2yuv(im): | |
return np.tensordot(im, RGB_TO_YUV, ([2], [1])) + YUV_OFFSET | |
def yuv2rgb(im): | |
return np.tensordot(im.astype(float) - YUV_OFFSET, YUV_TO_RGB, ([2], [1])) | |
def get_valid_idx(valid, candidates): | |
"""Find which values are present in a list and where they are located""" | |
locs = np.searchsorted(valid, candidates) | |
# Handle edge case where the candidate is larger than all valid values | |
locs = np.clip(locs, 0, len(valid) - 1) | |
# Identify which values are actually present | |
valid_idx = np.flatnonzero(valid[locs] == candidates) | |
locs = locs[valid_idx] | |
return valid_idx, locs | |
class BilateralGrid(object): | |
def __init__(self, im, sigma_spatial=32, sigma_luma=8, sigma_chroma=8): | |
im_yuv = rgb2yuv(im) | |
# Compute 5-dimensional XYLUV bilateral-space coordinates | |
Iy, Ix = np.mgrid[: im.shape[0], : im.shape[1]] | |
x_coords = (Ix / sigma_spatial).astype(int) | |
y_coords = (Iy / sigma_spatial).astype(int) | |
luma_coords = (im_yuv[..., 0] / sigma_luma).astype(int) | |
chroma_coords = (im_yuv[..., 1:] / sigma_chroma).astype(int) | |
coords = np.dstack((x_coords, y_coords, luma_coords, chroma_coords)) | |
coords_flat = coords.reshape(-1, coords.shape[-1]) | |
self.npixels, self.dim = coords_flat.shape | |
# Hacky "hash vector" for coordinates, | |
# Requires all scaled coordinates be < MAX_VAL | |
self.hash_vec = MAX_VAL ** np.arange(self.dim) | |
# Construct S and B matrix | |
self._compute_factorization(coords_flat) | |
def _compute_factorization(self, coords_flat): | |
# Hash each coordinate in grid to a unique value | |
hashed_coords = self._hash_coords(coords_flat) | |
unique_hashes, unique_idx, idx = np.unique( | |
hashed_coords, return_index=True, return_inverse=True | |
) | |
# Identify unique set of vertices | |
unique_coords = coords_flat[unique_idx] | |
self.nvertices = len(unique_coords) | |
# Construct sparse splat matrix that maps from pixels to vertices | |
self.S = csr_matrix((np.ones(self.npixels), (idx, np.arange(self.npixels)))) | |
# Construct sparse blur matrices. | |
# Note that these represent [1 0 1] blurs, excluding the central element | |
self.blurs = [] | |
for d in range(self.dim): | |
blur = 0.0 | |
for offset in (-1, 1): | |
offset_vec = np.zeros((1, self.dim)) | |
offset_vec[:, d] = offset | |
neighbor_hash = self._hash_coords(unique_coords + offset_vec) | |
valid_coord, idx = get_valid_idx(unique_hashes, neighbor_hash) | |
blur = blur + csr_matrix( | |
(np.ones((len(valid_coord),)), (valid_coord, idx)), | |
shape=(self.nvertices, self.nvertices), | |
) | |
self.blurs.append(blur) | |
def _hash_coords(self, coord): | |
"""Hacky function to turn a coordinate into a unique value""" | |
return np.dot(coord.reshape(-1, self.dim), self.hash_vec) | |
def splat(self, x): | |
return self.S.dot(x) | |
def slice(self, y): | |
return self.S.T.dot(y) | |
def blur(self, x): | |
"""Blur a bilateral-space vector with a 1 2 1 kernel in each dimension""" | |
assert x.shape[0] == self.nvertices | |
out = 2 * self.dim * x | |
for blur in self.blurs: | |
out = out + blur.dot(x) | |
return out | |
def filter(self, x): | |
"""Apply bilateral filter to an input x""" | |
return self.slice(self.blur(self.splat(x))) / self.slice( | |
self.blur(self.splat(np.ones_like(x))) | |
) | |
def bistochastize(grid, maxiter=10): | |
"""Compute diagonal matrices to bistochastize a bilateral grid""" | |
m = grid.splat(np.ones(grid.npixels)) | |
n = np.ones(grid.nvertices) | |
for i in range(maxiter): | |
n = np.sqrt(n * m / grid.blur(n)) | |
# Correct m to satisfy the assumption of bistochastization regardless | |
# of how many iterations have been run. | |
m = n * grid.blur(n) | |
Dm = diags(m, 0) | |
Dn = diags(n, 0) | |
return Dn, Dm | |
class BilateralSolver(object): | |
def __init__(self, grid, params): | |
self.grid = grid | |
self.params = params | |
self.Dn, self.Dm = bistochastize(grid) | |
def solve(self, x, w): | |
# Check that w is a vector or a nx1 matrix | |
if w.ndim == 2: | |
assert w.shape[1] == 1 | |
elif w.dim == 1: | |
w = w.reshape(w.shape[0], 1) | |
A_smooth = self.Dm - self.Dn.dot(self.grid.blur(self.Dn)) | |
w_splat = self.grid.splat(w) | |
A_data = diags(w_splat[:, 0], 0) | |
A = self.params["lam"] * A_smooth + A_data | |
xw = x * w | |
b = self.grid.splat(xw) | |
# Use simple Jacobi preconditioner | |
A_diag = np.maximum(A.diagonal(), self.params["A_diag_min"]) | |
M = diags(1 / A_diag, 0) | |
# Flat initialization | |
y0 = self.grid.splat(xw) / w_splat | |
yhat = np.empty_like(y0) | |
for d in range(x.shape[-1]): | |
yhat[..., d], info = cg( | |
A, | |
b[..., d], | |
x0=y0[..., d], | |
M=M, | |
maxiter=self.params["cg_maxiter"], | |
tol=self.params["cg_tol"], | |
) | |
xhat = self.grid.slice(yhat) | |
return xhat | |
def bilateral_solver_output( | |
img_pth, | |
target, | |
img=None, | |
sigma_spatial=24, | |
sigma_luma=4, | |
sigma_chroma=4, | |
get_all_cc=False, | |
): | |
if img is None: | |
reference = np.array(Image.open(img_pth).convert("RGB")) | |
else: | |
reference = np.array(img) | |
h, w = target.shape | |
confidence = np.ones((h, w)) * 0.999 | |
grid_params = { | |
"sigma_luma": sigma_luma, # Brightness bandwidth | |
"sigma_chroma": sigma_chroma, # Color bandwidth | |
"sigma_spatial": sigma_spatial, # Spatial bandwidth | |
} | |
bs_params = { | |
"lam": 256, # The strength of the smoothness parameter | |
"A_diag_min": 1e-5, # Clamp the diagonal of the A diagonal in the Jacobi preconditioner. | |
"cg_tol": 1e-5, # The tolerance on the convergence in PCG | |
"cg_maxiter": 25, # The number of PCG iterations | |
} | |
grid = BilateralGrid(reference, **grid_params) | |
t = target.reshape(-1, 1).astype(np.double) | |
c = confidence.reshape(-1, 1).astype(np.double) | |
# output solver, which is a soft value | |
output_solver = BilateralSolver(grid, bs_params).solve(t, c).reshape((h, w)) | |
binary_solver = ndimage.binary_fill_holes(output_solver > 0.5) | |
labeled, nr_objects = ndimage.label(binary_solver) | |
nb_pixel = [np.sum(labeled == i) for i in range(nr_objects + 1)] | |
pixel_order = np.argsort(nb_pixel) | |
if get_all_cc: | |
# Remove known bakground | |
pixel_descending_order = pixel_order[::-1] | |
# Get all CC expect biggest one, may consider it as background, try and change here | |
binary_solver = ( | |
(labeled[None, :, :] == pixel_descending_order[1:, None, None]) | |
.astype(int) | |
.sum(0) | |
) | |
else: | |
try: | |
binary_solver = labeled == pixel_order[-2] | |
except: | |
binary_solver = np.ones((h, w), dtype=bool) | |
return output_solver, binary_solver | |