peekaboo-demo / utils /visualize_outputs_save.py
hasibzunair's picture
add files
1803579
raw
history blame
4.62 kB
# Code for Peekaboo
# Author: Hasib Zunair
# Modified from https://github.com/valeoai/FOUND, see license below.
# Copyright 2022 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visualize outputs and save masks of both model predictions and ground truths.
Usage:
python ./utils/visualize_outputs.py --model-weights outputs/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8/decoder_weights_niter500.pt --img-folder ./datasets_local/ECSSD/images/ --output-dir outputs/visualizations/msl_a1.5_b1_g1_reg4-MSL-DUTS-TR-vit_small8_ECSSD
"""
import os
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import cv2
import numpy as np
from PIL import Image
from model import PeekabooModel
from misc import load_config
from torchvision import transforms as T
NORMALIZE = T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Evaluation of Peekaboo",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--img-folder", type=str, default="data/examples/", help="Image folder path."
)
parser.add_argument(
"--model-weights",
type=str,
default="data/weights/decoder_weights.pt",
)
parser.add_argument(
"--config",
type=str,
default="configs/msl_DUTS-TR.yaml",
)
parser.add_argument(
"--output-dir",
type=str,
default="outputs",
)
args = parser.parse_args()
# Saving dir
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Configuration
config, _ = load_config(args.config)
# ------------------------------------
# Load the model
model = PeekabooModel(
vit_model=config.model["pre_training"],
vit_arch=config.model["arch"],
vit_patch_size=config.model["patch_size"],
enc_type_feats=config.peekaboo["feats"],
)
# Load weights
model.decoder_load_weights(args.model_weights)
model.eval()
print(f"Model {args.model_weights} loaded correctly.")
img_paths = sorted(
[os.path.join(args.img_folder, path) for path in os.listdir(args.img_folder)]
)
dir = "./datasets_local/DUT-OMRON/pixelwiseGT-new-PNG/"
mask_paths = sorted([os.path.join(dir, path) for path in os.listdir(dir)])
for img_path, mask_path in zip(img_paths, mask_paths):
# Load the image
with open(img_path, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
img_np = np.array(img)
t = T.Compose([T.ToTensor(), NORMALIZE])
img_t = t(img)[None, :, :, :]
inputs = img_t.to("cuda")
# Load mask
with open(mask_path, "rb") as f:
mask = Image.open(f).convert("P")
mask_np = np.array(mask)
mask_np = (mask_np / np.max(mask_np) * 255).astype(np.uint8)
mask_np_3d = np.stack([mask_np, mask_np, mask_np], axis=-1)
# Forward step
with torch.no_grad():
preds = model(inputs, for_eval=True)
sigmoid = nn.Sigmoid()
h, w = img_t.shape[-2:]
preds_up = F.interpolate(
preds,
scale_factor=model.vit_patch_size,
mode="bilinear",
align_corners=False,
)[..., :h, :w]
preds_up = (sigmoid(preds_up.detach()) > 0.5).squeeze(0).float()
preds_up_np = preds_up.cpu().squeeze().numpy()
preds_up_np = (preds_up_np / np.max(preds_up_np) * 255).astype(np.uint8)
preds_up_np_3d = np.stack([preds_up_np, preds_up_np, preds_up_np], axis=-1)
combined_image = cv2.addWeighted(img_np, 0.5, mask_np_3d, 0.5, 0)
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
save_path = os.path.join(args.output_dir, img_path.split("/")[-1])
cv2.imwrite(save_path, combined_image)
print(f"Saved image in {save_path} with shape {combined_image.shape}")