Spaces:
Running
Running
""" | |
Code adapted from SelfMask: https://github.com/NoelShin/selfmask | |
""" | |
from typing import Optional, Union | |
import numpy as np | |
import torch | |
def compute_iou( | |
pred_mask: Union[np.ndarray, torch.Tensor], | |
gt_mask: Union[np.ndarray, torch.Tensor], | |
threshold: Optional[float] = 0.5, | |
eps: float = 1e-7, | |
) -> Union[np.ndarray, torch.Tensor]: | |
""" | |
:param pred_mask: (B x H x W) or (H x W) | |
:param gt_mask: (B x H x W) or (H x W), same shape with pred_mask | |
:param threshold: a binarization threshold | |
:param eps: a small value for computational stability | |
:return: (B) or (1) | |
""" | |
assert pred_mask.shape == gt_mask.shape, f"{pred_mask.shape} != {gt_mask.shape}" | |
# assert 0. <= pred_mask.to(torch.float32).min() and pred_mask.max().to(torch.float32) <= 1., f"{pred_mask.min(), pred_mask.max()}" | |
if threshold is not None: | |
pred_mask = pred_mask > threshold | |
if isinstance(pred_mask, np.ndarray): | |
intersection = np.logical_and(pred_mask, gt_mask).sum(axis=(-1, -2)) | |
union = np.logical_or(pred_mask, gt_mask).sum(axis=(-1, -2)) | |
ious = intersection / (union + eps) | |
else: | |
intersection = torch.logical_and(pred_mask, gt_mask).sum(dim=(-1, -2)) | |
union = torch.logical_or(pred_mask, gt_mask).sum(dim=(-1, -2)) | |
ious = (intersection / (union + eps)).cpu() | |
return ious | |