hasibzunair's picture
add files
1803579
raw
history blame
1.37 kB
"""
Code adapted from SelfMask: https://github.com/NoelShin/selfmask
"""
from typing import Optional, Union
import numpy as np
import torch
def compute_iou(
pred_mask: Union[np.ndarray, torch.Tensor],
gt_mask: Union[np.ndarray, torch.Tensor],
threshold: Optional[float] = 0.5,
eps: float = 1e-7,
) -> Union[np.ndarray, torch.Tensor]:
"""
:param pred_mask: (B x H x W) or (H x W)
:param gt_mask: (B x H x W) or (H x W), same shape with pred_mask
:param threshold: a binarization threshold
:param eps: a small value for computational stability
:return: (B) or (1)
"""
assert pred_mask.shape == gt_mask.shape, f"{pred_mask.shape} != {gt_mask.shape}"
# assert 0. <= pred_mask.to(torch.float32).min() and pred_mask.max().to(torch.float32) <= 1., f"{pred_mask.min(), pred_mask.max()}"
if threshold is not None:
pred_mask = pred_mask > threshold
if isinstance(pred_mask, np.ndarray):
intersection = np.logical_and(pred_mask, gt_mask).sum(axis=(-1, -2))
union = np.logical_or(pred_mask, gt_mask).sum(axis=(-1, -2))
ious = intersection / (union + eps)
else:
intersection = torch.logical_and(pred_mask, gt_mask).sum(dim=(-1, -2))
union = torch.logical_or(pred_mask, gt_mask).sum(dim=(-1, -2))
ious = (intersection / (union + eps)).cpu()
return ious