sentiment-api / app.py
hasanmustafa0503's picture
Update app.py
51dbb8f verified
raw
history blame contribute delete
904 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the sentiment analysis pipeline
sentiment_pipeline = pipeline(
"text-classification",
model="hasanmustafa0503/SentimentModel",
tokenizer="hasanmustafa0503/SentimentModel"
)
# Function to classify sentiment of text
def classify_sentiment(text):
result = sentiment_pipeline(text)
return result[0]['label'], result[0]['score']
# Define Gradio interface
iface = gr.Interface(
fn=classify_sentiment, # Function to call
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Text input box
outputs=[gr.Label(), gr.Number()], # Label for sentiment and score
title="Sentiment Analysis", # Title for the app
description="Enter some text, and this tool will predict the sentiment as POSITIVE or NEGATIVE along with the confidence score.", # Description
)
# Launch the app
iface.launch()