Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Delete app.py
Browse files
    	
        app.py
    DELETED
    
    | @@ -1,169 +0,0 @@ | |
| 1 | 
            -
            import os
         | 
| 2 | 
            -
            from PyPDF2 import PdfReader
         | 
| 3 | 
            -
            from langchain.text_splitter import RecursiveCharacterTextSplitter
         | 
| 4 | 
            -
            from langchain.vectorstores import FAISS
         | 
| 5 | 
            -
            from langchain.prompts import PromptTemplate
         | 
| 6 | 
            -
            from langchain.chains.question_answering import load_qa_chain
         | 
| 7 | 
            -
            from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
         | 
| 8 | 
            -
            from dotenv import load_dotenv
         | 
| 9 | 
            -
            import streamlit as st
         | 
| 10 | 
            -
            import re
         | 
| 11 | 
            -
            from google.generativeai import configure
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            # Load environment variables
         | 
| 14 | 
            -
            load_dotenv()
         | 
| 15 | 
            -
            os.getenv("GOOGLE_API_KEY")
         | 
| 16 | 
            -
             | 
| 17 | 
            -
            # Configure Google Generative AI
         | 
| 18 | 
            -
            configure(api_key=os.getenv("GOOGLE_API_KEY"))
         | 
| 19 | 
            -
             | 
| 20 | 
            -
            def get_pdf_text(pdf_docs):
         | 
| 21 | 
            -
                """Extract text and course details (title, description, and link) from the PDF."""
         | 
| 22 | 
            -
                text = ""
         | 
| 23 | 
            -
                course_details = []
         | 
| 24 | 
            -
                for pdf in pdf_docs:
         | 
| 25 | 
            -
                    pdf_reader = PdfReader(pdf)
         | 
| 26 | 
            -
                    for page in pdf_reader.pages:
         | 
| 27 | 
            -
                        page_text = page.extract_text()
         | 
| 28 | 
            -
                        text += page_text
         | 
| 29 | 
            -
                        
         | 
| 30 | 
            -
                        # Extract the course titles and links (bold titles and underlined links)
         | 
| 31 | 
            -
                        courses = extract_course_details(page_text)
         | 
| 32 | 
            -
                        course_details.extend(courses)
         | 
| 33 | 
            -
             | 
| 34 | 
            -
                return text, course_details
         | 
| 35 | 
            -
             | 
| 36 | 
            -
            def extract_course_details(page_text):
         | 
| 37 | 
            -
                """Extract course title and link from the page text."""
         | 
| 38 | 
            -
                course_details = []
         | 
| 39 | 
            -
                # Regex to find bold titles and underlined links
         | 
| 40 | 
            -
                title_pattern = r"(\*\*([A-Z\s]+)\*\*)(.*?)(http[s]?://[^\s]+)"
         | 
| 41 | 
            -
                matches = re.findall(title_pattern, page_text)
         | 
| 42 | 
            -
                
         | 
| 43 | 
            -
                for match in matches:
         | 
| 44 | 
            -
                    title = match[1].strip()
         | 
| 45 | 
            -
                    description = match[2].strip()
         | 
| 46 | 
            -
                    link = match[3].strip()
         | 
| 47 | 
            -
                    
         | 
| 48 | 
            -
                    # Return tuple of course title, description, and link
         | 
| 49 | 
            -
                    course_details.append({
         | 
| 50 | 
            -
                        "title": title,
         | 
| 51 | 
            -
                        "description": description,
         | 
| 52 | 
            -
                        "link": link
         | 
| 53 | 
            -
                    })
         | 
| 54 | 
            -
                
         | 
| 55 | 
            -
                return course_details
         | 
| 56 | 
            -
             | 
| 57 | 
            -
            def get_text_chunks(text, course_details):
         | 
| 58 | 
            -
                """Split the extracted text into chunks and append course links to the description."""
         | 
| 59 | 
            -
                text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
         | 
| 60 | 
            -
                
         | 
| 61 | 
            -
                chunks = []
         | 
| 62 | 
            -
                for course in course_details:
         | 
| 63 | 
            -
                    course_text = f"**Course Title**: {course['title']}\n"
         | 
| 64 | 
            -
                    course_text += f"[Course Link]({course['link']})\n"
         | 
| 65 | 
            -
                    course_text += f"**Description**: {course['description']}\n"
         | 
| 66 | 
            -
                    
         | 
| 67 | 
            -
                    text_chunks = text_splitter.split_text(course_text)
         | 
| 68 | 
            -
                    chunks.extend(text_chunks)
         | 
| 69 | 
            -
                
         | 
| 70 | 
            -
                return chunks
         | 
| 71 | 
            -
             | 
| 72 | 
            -
            def get_vector_store(text_chunks):
         | 
| 73 | 
            -
                """Generate and store embeddings in a vector store."""
         | 
| 74 | 
            -
                embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
         | 
| 75 | 
            -
                vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
         | 
| 76 | 
            -
                vector_store.save_local("embedding")
         | 
| 77 | 
            -
                return vector_store
         | 
| 78 | 
            -
             | 
| 79 | 
            -
            def generate_embeddings_from_pdf(pdf_docs):
         | 
| 80 | 
            -
                """Generate and save embeddings from the PDF course file."""
         | 
| 81 | 
            -
                # Extract text and course details from the PDF
         | 
| 82 | 
            -
                raw_text, course_details = get_pdf_text(pdf_docs)
         | 
| 83 | 
            -
                
         | 
| 84 | 
            -
                # Get text chunks with course title, link, and description
         | 
| 85 | 
            -
                text_chunks = get_text_chunks(raw_text, course_details)
         | 
| 86 | 
            -
                
         | 
| 87 | 
            -
                # Generate and save the vector store
         | 
| 88 | 
            -
                vector_store = get_vector_store(text_chunks)
         | 
| 89 | 
            -
                
         | 
| 90 | 
            -
                print(f"Embeddings generated and saved successfully.")
         | 
| 91 | 
            -
                return vector_store
         | 
| 92 | 
            -
             | 
| 93 | 
            -
            def load_vector_store():
         | 
| 94 | 
            -
                """Load pre-generated embeddings from FAISS."""
         | 
| 95 | 
            -
                embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
         | 
| 96 | 
            -
                vector_store = FAISS.load_local("embedding", embeddings, allow_dangerous_deserialization=True)
         | 
| 97 | 
            -
                return vector_store
         | 
| 98 | 
            -
             | 
| 99 | 
            -
            def get_conversational_chain():
         | 
| 100 | 
            -
                """Create a structured chain for processing search queries."""
         | 
| 101 | 
            -
                system_prompt = """
         | 
| 102 | 
            -
                You are an intelligent assistant helping users find the best free courses on data science, machine learning, and related fields.
         | 
| 103 | 
            -
                When given a query, recommend courses by analyzing their relevance based on:
         | 
| 104 | 
            -
                - Keywords
         | 
| 105 | 
            -
                - Topics of interest
         | 
| 106 | 
            -
                - User's goals (if provided)
         | 
| 107 | 
            -
             | 
| 108 | 
            -
                Format your responses as:
         | 
| 109 | 
            -
                - **Course Title**: <Title>
         | 
| 110 | 
            -
                - [Course Link](<Link>)
         | 
| 111 | 
            -
                - **Description**: <Brief Description>
         | 
| 112 | 
            -
                - **Relevance**: <Why it is recommended>
         | 
| 113 | 
            -
                Provide concise and actionable recommendations.
         | 
| 114 | 
            -
                """
         | 
| 115 | 
            -
             | 
| 116 | 
            -
                prompt_template = PromptTemplate(
         | 
| 117 | 
            -
                    template=system_prompt + "\nContext: {context}\nQuery: {query}",
         | 
| 118 | 
            -
                    input_variables=["context", "query"]
         | 
| 119 | 
            -
                )
         | 
| 120 | 
            -
                model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
         | 
| 121 | 
            -
                chain = load_qa_chain(model, chain_type="stuff", prompt=prompt_template)
         | 
| 122 | 
            -
             | 
| 123 | 
            -
                return chain
         | 
| 124 | 
            -
             | 
| 125 | 
            -
            def user_input(user_query, keywords):
         | 
| 126 | 
            -
                """Process user input and search for relevant courses."""
         | 
| 127 | 
            -
                vector_store = load_vector_store()
         | 
| 128 | 
            -
                chain = get_conversational_chain()
         | 
| 129 | 
            -
             | 
| 130 | 
            -
                # Construct search query
         | 
| 131 | 
            -
                query_context = f"Keywords: {keywords}. Query: {user_query}."
         | 
| 132 | 
            -
                docs = vector_store.similarity_search(query_context)
         | 
| 133 | 
            -
             | 
| 134 | 
            -
                # Get recommendations
         | 
| 135 | 
            -
                response = chain({
         | 
| 136 | 
            -
                    "input_documents": docs,
         | 
| 137 | 
            -
                    "context": "Analytics Vidhya free courses database.",
         | 
| 138 | 
            -
                    "query": query_context
         | 
| 139 | 
            -
                }, return_only_outputs=True)
         | 
| 140 | 
            -
             | 
| 141 | 
            -
                return response["output_text"]
         | 
| 142 | 
            -
             | 
| 143 | 
            -
            def main():
         | 
| 144 | 
            -
                # Streamlit app UI
         | 
| 145 | 
            -
                st.set_page_config("Smart Course Search", layout="wide")
         | 
| 146 | 
            -
                st.title("Smart Course Search Tool")
         | 
| 147 | 
            -
                st.write("Search for the most relevant free courses using natural language or keywords.")
         | 
| 148 | 
            -
             | 
| 149 | 
            -
                # User inputs
         | 
| 150 | 
            -
                user_query = st.text_input("Enter your search query or context (e.g., 'I want to learn deep learning')")
         | 
| 151 | 
            -
                keywords = st.text_input("Enter specific keywords (comma-separated, e.g., 'NLP, data visualization')")
         | 
| 152 | 
            -
             | 
| 153 | 
            -
                if st.button("Search Courses"):
         | 
| 154 | 
            -
                    if user_query or keywords:
         | 
| 155 | 
            -
                        with st.spinner("Searching for the best courses..."):
         | 
| 156 | 
            -
                            results = user_input(user_query, keywords)
         | 
| 157 | 
            -
                            st.success("Search Complete!")
         | 
| 158 | 
            -
                            
         | 
| 159 | 
            -
                            # Beautify and display the results
         | 
| 160 | 
            -
                            if results:
         | 
| 161 | 
            -
                                formatted_results = results.replace("**", "<b>").replace("**", "</b>").replace("[", "<u>").replace("]", "</u>")
         | 
| 162 | 
            -
                                st.markdown(formatted_results, unsafe_allow_html=True)
         | 
| 163 | 
            -
                            else:
         | 
| 164 | 
            -
                                st.warning("No relevant courses found.")
         | 
| 165 | 
            -
                    else:
         | 
| 166 | 
            -
                        st.error("Please provide a query or keywords for searching.")
         | 
| 167 | 
            -
             | 
| 168 | 
            -
            if __name__ == "__main__":
         | 
| 169 | 
            -
                main()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  |