Spaces:
Runtime error
Runtime error
| import whisper | |
| import gradio as gr | |
| import time | |
| import google.generativeai as palm | |
| palm.configure(api_key='AIzaSyCLy2IgNwMBDbhYH_zvUDo0AMWQdRLQI0E') | |
| model = whisper.load_model("base") | |
| print(model.device) | |
| def transcribe(audio): | |
| #time.sleep(3) | |
| # load audio and pad/trim it to fit 30 seconds | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| # make log-Mel spectrogram and move to the same device as the model | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| # # detect the spoken language | |
| # _, probs = model.detect_language(mel) | |
| # print(f"Detected language: {max(probs, key=probs.get)}") | |
| # decode the audio | |
| # options = whisper.DecodingOptions() | |
| # for cpu | |
| options = whisper.DecodingOptions(fp16=False) | |
| result = whisper.decode(model, mel, options) | |
| print(result.text) | |
| completion = palm.generate_text( | |
| model='models/text-bison-001', | |
| prompt=result.text, | |
| temperature=0, | |
| # The maximum length of the response | |
| max_output_tokens=500, | |
| ).result | |
| return completion | |
| gr.Interface( | |
| title = 'Real-time AI-based Audio Transcription, Recognition, Answerer Web App', | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="microphone", type="filepath") | |
| ], | |
| outputs=[ | |
| "textbox" | |
| ], | |
| live=True).launch(share=True) | |