Spaces:
Runtime error
Runtime error
import whisper | |
import gradio as gr | |
import time | |
import google.generativeai as palm | |
palm.configure(api_key='AIzaSyCLy2IgNwMBDbhYH_zvUDo0AMWQdRLQI0E') | |
model = whisper.load_model("base") | |
print(model.device) | |
def transcribe(audio): | |
#time.sleep(3) | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# # detect the spoken language | |
# _, probs = model.detect_language(mel) | |
# print(f"Detected language: {max(probs, key=probs.get)}") | |
# decode the audio | |
# options = whisper.DecodingOptions() | |
# for cpu | |
options = whisper.DecodingOptions(fp16=False) | |
result = whisper.decode(model, mel, options) | |
print(result.text) | |
completion = palm.generate_text( | |
model='models/text-bison-001', | |
prompt=result.text, | |
temperature=0, | |
# The maximum length of the response | |
max_output_tokens=500, | |
).result | |
return completion | |
gr.Interface( | |
title = 'Real-time AI-based Audio Transcription, Recognition, Answerer Web App', | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath") | |
], | |
outputs=[ | |
"textbox" | |
], | |
live=True).launch(share=True) | |