Spaces:
Paused
Paused
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, Dict, List, Optional, Union | |
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ...schedulers import DDPMWuerstchenScheduler | |
from ...utils import deprecate, replace_example_docstring | |
from ..pipeline_utils import DiffusionPipeline | |
from .modeling_paella_vq_model import PaellaVQModel | |
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt | |
from .modeling_wuerstchen_prior import WuerstchenPrior | |
from .pipeline_wuerstchen import WuerstchenDecoderPipeline | |
from .pipeline_wuerstchen_prior import WuerstchenPriorPipeline | |
TEXT2IMAGE_EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from diffusions import WuerstchenCombinedPipeline | |
>>> pipe = WuerstchenCombinedPipeline.from_pretrained("warp-ai/Wuerstchen", torch_dtype=torch.float16).to( | |
... "cuda" | |
... ) | |
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" | |
>>> images = pipe(prompt=prompt) | |
``` | |
""" | |
class WuerstchenCombinedPipeline(DiffusionPipeline): | |
""" | |
Combined Pipeline for text-to-image generation using Wuerstchen | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
tokenizer (`CLIPTokenizer`): | |
The decoder tokenizer to be used for text inputs. | |
text_encoder (`CLIPTextModel`): | |
The decoder text encoder to be used for text inputs. | |
decoder (`WuerstchenDiffNeXt`): | |
The decoder model to be used for decoder image generation pipeline. | |
scheduler (`DDPMWuerstchenScheduler`): | |
The scheduler to be used for decoder image generation pipeline. | |
vqgan (`PaellaVQModel`): | |
The VQGAN model to be used for decoder image generation pipeline. | |
prior_tokenizer (`CLIPTokenizer`): | |
The prior tokenizer to be used for text inputs. | |
prior_text_encoder (`CLIPTextModel`): | |
The prior text encoder to be used for text inputs. | |
prior_prior (`WuerstchenPrior`): | |
The prior model to be used for prior pipeline. | |
prior_scheduler (`DDPMWuerstchenScheduler`): | |
The scheduler to be used for prior pipeline. | |
""" | |
_load_connected_pipes = True | |
def __init__( | |
self, | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModel, | |
decoder: WuerstchenDiffNeXt, | |
scheduler: DDPMWuerstchenScheduler, | |
vqgan: PaellaVQModel, | |
prior_tokenizer: CLIPTokenizer, | |
prior_text_encoder: CLIPTextModel, | |
prior_prior: WuerstchenPrior, | |
prior_scheduler: DDPMWuerstchenScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
decoder=decoder, | |
scheduler=scheduler, | |
vqgan=vqgan, | |
prior_prior=prior_prior, | |
prior_text_encoder=prior_text_encoder, | |
prior_tokenizer=prior_tokenizer, | |
prior_scheduler=prior_scheduler, | |
) | |
self.prior_pipe = WuerstchenPriorPipeline( | |
prior=prior_prior, | |
text_encoder=prior_text_encoder, | |
tokenizer=prior_tokenizer, | |
scheduler=prior_scheduler, | |
) | |
self.decoder_pipe = WuerstchenDecoderPipeline( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
decoder=decoder, | |
scheduler=scheduler, | |
vqgan=vqgan, | |
) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): | |
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op) | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared | |
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` | |
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with | |
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. | |
""" | |
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id) | |
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id) | |
def enable_sequential_cpu_offload(self, gpu_id=0): | |
r""" | |
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗 | |
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a | |
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis. | |
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower. | |
""" | |
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id) | |
def progress_bar(self, iterable=None, total=None): | |
self.prior_pipe.progress_bar(iterable=iterable, total=total) | |
self.decoder_pipe.progress_bar(iterable=iterable, total=total) | |
def set_progress_bar_config(self, **kwargs): | |
self.prior_pipe.set_progress_bar_config(**kwargs) | |
self.decoder_pipe.set_progress_bar_config(**kwargs) | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
height: int = 512, | |
width: int = 512, | |
prior_num_inference_steps: int = 60, | |
prior_timesteps: Optional[List[float]] = None, | |
prior_guidance_scale: float = 4.0, | |
num_inference_steps: int = 12, | |
decoder_timesteps: Optional[List[float]] = None, | |
decoder_guidance_scale: float = 0.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
num_images_per_prompt: int = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
prior_callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation for the prior and decoder. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* | |
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
height (`int`, *optional*, defaults to 512): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to 512): | |
The width in pixels of the generated image. | |
prior_guidance_scale (`float`, *optional*, defaults to 4.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`prior_guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting | |
`prior_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked | |
to the text `prompt`, usually at the expense of lower image quality. | |
prior_num_inference_steps (`Union[int, Dict[float, int]]`, *optional*, defaults to 60): | |
The number of prior denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. For more specific timestep spacing, you can pass customized | |
`prior_timesteps` | |
num_inference_steps (`int`, *optional*, defaults to 12): | |
The number of decoder denoising steps. More denoising steps usually lead to a higher quality image at | |
the expense of slower inference. For more specific timestep spacing, you can pass customized | |
`timesteps` | |
prior_timesteps (`List[float]`, *optional*): | |
Custom timesteps to use for the denoising process for the prior. If not defined, equal spaced | |
`prior_num_inference_steps` timesteps are used. Must be in descending order. | |
decoder_timesteps (`List[float]`, *optional*): | |
Custom timesteps to use for the denoising process for the decoder. If not defined, equal spaced | |
`num_inference_steps` timesteps are used. Must be in descending order. | |
decoder_guidance_scale (`float`, *optional*, defaults to 0.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`) or `"pt"` (`torch.Tensor`). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
prior_callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `prior_callback_on_step_end(self: DiffusionPipeline, step: int, timestep: | |
int, callback_kwargs: Dict)`. | |
prior_callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the | |
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in | |
the `._callback_tensor_inputs` attribute of your pipeline class. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True, | |
otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
prior_kwargs = {} | |
if kwargs.get("prior_callback", None) is not None: | |
prior_kwargs["callback"] = kwargs.pop("prior_callback") | |
deprecate( | |
"prior_callback", | |
"1.0.0", | |
"Passing `prior_callback` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
) | |
if kwargs.get("prior_callback_steps", None) is not None: | |
deprecate( | |
"prior_callback_steps", | |
"1.0.0", | |
"Passing `prior_callback_steps` as an input argument to `__call__` is deprecated, consider use `prior_callback_on_step_end`", | |
) | |
prior_kwargs["callback_steps"] = kwargs.pop("prior_callback_steps") | |
prior_outputs = self.prior_pipe( | |
prompt=prompt if prompt_embeds is None else None, | |
height=height, | |
width=width, | |
num_inference_steps=prior_num_inference_steps, | |
timesteps=prior_timesteps, | |
guidance_scale=prior_guidance_scale, | |
negative_prompt=negative_prompt if negative_prompt_embeds is None else None, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
latents=latents, | |
output_type="pt", | |
return_dict=False, | |
callback_on_step_end=prior_callback_on_step_end, | |
callback_on_step_end_tensor_inputs=prior_callback_on_step_end_tensor_inputs, | |
**prior_kwargs, | |
) | |
image_embeddings = prior_outputs[0] | |
outputs = self.decoder_pipe( | |
image_embeddings=image_embeddings, | |
prompt=prompt if prompt is not None else "", | |
num_inference_steps=num_inference_steps, | |
timesteps=decoder_timesteps, | |
guidance_scale=decoder_guidance_scale, | |
negative_prompt=negative_prompt, | |
generator=generator, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback_on_step_end=callback_on_step_end, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
**kwargs, | |
) | |
return outputs | |