harshinde commited on
Commit
5df2c7c
Β·
verified Β·
1 Parent(s): fc2f9ec

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +42 -9
README.md CHANGED
@@ -1,20 +1,53 @@
1
  ---
2
- title: Sims
3
- emoji: πŸš€
4
- colorFrom: red
5
- colorTo: red
6
  sdk: docker
7
  app_port: 8501
8
  tags:
9
  - streamlit
 
 
 
10
  pinned: false
11
- short_description: Streamlit template space
12
  license: apache-2.0
13
  ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Landslide Detection Models
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: green
6
  sdk: docker
7
  app_port: 8501
8
  tags:
9
  - streamlit
10
+ - pytorch
11
+ - deep-learning
12
+ - landslide-detection
13
  pinned: false
14
+ short_description: Landslide detection using various deep learning models
15
  license: apache-2.0
16
  ---
17
 
18
+ # Landslide Detection Models Demo
19
 
20
+ This Space demonstrates various deep learning models for landslide detection, using models trained with PyTorch. The models are served directly from our [Kaggle Models Repository](https://www.kaggle.com/models/harshshinde8/sims/).
21
 
22
+ ## Available Models
23
+ - DeepLabV3+
24
+ - DenseNet121
25
+ - EfficientNetB0
26
+ - InceptionResNetV2
27
+ - InceptionV4
28
+ - MiT-B1
29
+ - MobileNetV2
30
+ - ResNet34
31
+ - ResNeXt50_32X4D
32
+ - SE-ResNet50
33
+ - SE-ResNeXt50_32X4D
34
+ - SegFormer
35
+ - VGG16
36
+
37
+ ## How to Use
38
+ 1. Select a model from the sidebar
39
+ 2. Upload one or more `.h5` files containing satellite imagery
40
+ 3. View the landslide detection results and predictions
41
+ 4. Download the results if needed
42
+
43
+ ## Model Information
44
+ All models are trained on satellite imagery data and are optimized for landslide detection. Each model has its own strengths and characteristics, which are described in the app interface when you select them.
45
+
46
+ ## Technical Details
47
+ - Python 3.9
48
+ - PyTorch 1.9.0
49
+ - Streamlit 1.28.0
50
+ - Models are automatically downloaded from Kaggle when needed
51
+
52
+ ## Author
53
+ - Harsh Shinde