harshinde commited on
Commit
4307791
·
verified ·
1 Parent(s): af5a072

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from langchain.embeddings import HuggingFaceEmbeddings
4
+ from langchain.vectorstores import FAISS
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain.llms import HuggingFaceHub
7
+ from langchain.schema import Document
8
+ import requests
9
+ from io import BytesIO
10
+ import fitz # PyMuPDF
11
+ from dotenv import load_dotenv
12
+
13
+ # Set device based on GPU availability
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+
16
+ # Load environment variables from .env file
17
+ load_dotenv()
18
+
19
+ # Hugging Face API token should now be loaded from the .env file
20
+ # Explicitly set the Hugging Face API token from the environment variable
21
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACE_API_TOKEN")
22
+
23
+ # Load embeddings with Hugging Face API
24
+ embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
25
+ embeddings = HuggingFaceEmbeddings(model_name=embedding_model) # Removed api_key parameter
26
+
27
+ # Set up the text generation model using Hugging Face Hub
28
+ model_name = "google/flan-t5-small" # Use a smaller model to reduce response time and cost
29
+ llm = HuggingFaceHub(repo_id=model_name, huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"), model_kwargs={"max_length": 256, "temperature": 0.7})
30
+
31
+ # Streamlit interface
32
+ def main():
33
+ st.title("Chat with Multiple PDFs")
34
+ st.write("Upload PDF files and chat with them.")
35
+
36
+ # File uploader
37
+ uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"])
38
+
39
+ if uploaded_files:
40
+ # Load PDF documents
41
+ documents = []
42
+ for uploaded_file in uploaded_files:
43
+ pdf_content = BytesIO(uploaded_file.read())
44
+ doc = fitz.open(stream=pdf_content, filetype="pdf") # Open PDF with PyMuPDF
45
+ text = ""
46
+ for page in doc:
47
+ text += page.get_text() # Extract text from each page
48
+ doc.close()
49
+
50
+ # Create Document instance with page content
51
+ documents.append(Document(page_content=text, metadata={"file_name": uploaded_file.name}))
52
+
53
+ # Split documents into manageable chunks
54
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
55
+ chunks = text_splitter.split_documents(documents)
56
+
57
+ # Embed document chunks into vector store
58
+ vector_store = FAISS.from_documents(chunks, embeddings)
59
+
60
+ # User query input
61
+ st.write("You can now start chatting with your PDFs!")
62
+ user_input = st.text_input("Ask a question:")
63
+
64
+ if user_input:
65
+ # Perform similarity search on the vector store
66
+ docs = vector_store.similarity_search(user_input, k=3)
67
+
68
+ # Concatenate retrieved docs into a single prompt
69
+ prompt = "\n".join([doc.page_content for doc in docs]) + "\n\n" + user_input
70
+
71
+ # Generate response using the Hugging Face API
72
+ try:
73
+ response = llm(prompt)
74
+ st.write(response)
75
+ except requests.exceptions.RequestException as e:
76
+ st.error(f"Error connecting to Hugging Face API: {e}")
77
+
78
+ if __name__ == "__main__":
79
+ main()