Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
import torchaudio | |
# Load pre-trained model and processor | |
model_name = "facebook/wav2vec2-base-960h" | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def speech_to_text(audio): | |
try: | |
if audio is None: | |
return "No audio file provided." | |
# Load audio file | |
waveform, rate = torchaudio.load(audio) | |
# Ensure the audio is mono | |
if waveform.shape[0] > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
# Resample to 16000 Hz | |
resampler = torchaudio.transforms.Resample(orig_freq=rate, new_freq=16000) | |
waveform = resampler(waveform) | |
# Tokenize the waveform | |
inputs = processor(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000) | |
# Perform inference | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
# Decode the output | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return transcription | |
except Exception as e: | |
return str(e) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=speech_to_text, | |
inputs=gr.Audio(type="filepath", label="Input Audio"), | |
outputs=gr.Textbox(label="Transcription"), | |
live=True, | |
title="Speech to Text", | |
description="Speak into your microphone and get the transcribed text." | |
) | |
# Launch the interface | |
iface.launch() | |