Swarms / swarms /structs /round_robin.py
harshalmore31's picture
Synced repo using 'sync_with_huggingface' Github Action
d8d14f1 verified
import random
from swarms.structs.base_swarm import BaseSwarm
from typing import List
from swarms.structs.agent import Agent
from pydantic import BaseModel, Field
from typing import Optional
from datetime import datetime
from swarms.schemas.agent_step_schemas import ManySteps
import tenacity
from swarms.utils.loguru_logger import initialize_logger
logger = initialize_logger("round-robin")
datetime_stamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
class MetadataSchema(BaseModel):
swarm_id: Optional[str] = Field(
..., description="Unique ID for the run"
)
name: Optional[str] = Field(
"RoundRobinSwarm", description="Name of the swarm"
)
task: Optional[str] = Field(
..., description="Task or query given to all agents"
)
description: Optional[str] = Field(
"Concurrent execution of multiple agents",
description="Description of the workflow",
)
agent_outputs: Optional[List[ManySteps]] = Field(
..., description="List of agent outputs and metadata"
)
timestamp: Optional[str] = Field(
default_factory=datetime.now,
description="Timestamp of the workflow execution",
)
max_loops: Optional[int] = Field(
1, description="Maximum number of loops to run"
)
class RoundRobinSwarm(BaseSwarm):
"""
A swarm implementation that executes tasks in a round-robin fashion.
Args:
agents (List[Agent], optional): List of agents in the swarm. Defaults to None.
verbose (bool, optional): Flag to enable verbose mode. Defaults to False.
max_loops (int, optional): Maximum number of loops to run. Defaults to 1.
callback (callable, optional): Callback function to be called after each loop. Defaults to None.
return_json_on (bool, optional): Flag to return the metadata as a JSON object. Defaults to False.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
agents (List[Agent]): List of agents in the swarm.
verbose (bool): Flag to enable verbose mode.
max_loops (int): Maximum number of loops to run.
index (int): Current index of the agent being executed.
Methods:
run(task: str, *args, **kwargs) -> Any: Executes the given task on the agents in a round-robin fashion.
"""
def __init__(
self,
name: str = "RoundRobinSwarm",
description: str = "A swarm implementation that executes tasks in a round-robin fashion.",
agents: List[Agent] = None,
verbose: bool = False,
max_loops: int = 1,
callback: callable = None,
return_json_on: bool = False,
max_retries: int = 3,
*args,
**kwargs,
):
try:
super().__init__(
name=name,
description=description,
agents=agents,
*args,
**kwargs,
)
self.name = name
self.description = description
self.agents = agents or []
self.verbose = verbose
self.max_loops = max_loops
self.callback = callback
self.return_json_on = return_json_on
self.index = 0
self.max_retries = max_retries
# Store the metadata for the run
self.output_schema = MetadataSchema(
name=self.name,
swarm_id=datetime_stamp,
task="",
description=self.description,
agent_outputs=[],
timestamp=datetime_stamp,
max_loops=self.max_loops,
)
# Set the max loops for every agent
if self.agents:
for agent in self.agents:
agent.max_loops = random.randint(1, 5)
logger.info(
f"Successfully initialized {self.name} with {len(self.agents)} agents"
)
except Exception as e:
logger.error(
f"Failed to initialize {self.name}: {str(e)}"
)
raise
@tenacity.retry(
stop=tenacity.stop_after_attempt(3),
wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
retry=tenacity.retry_if_exception_type(Exception),
before_sleep=lambda retry_state: logger.info(
f"Retrying in {retry_state.next_action.sleep} seconds..."
),
)
def _execute_agent(
self, agent: Agent, task: str, *args, **kwargs
) -> str:
"""Execute a single agent with retries and error handling"""
try:
logger.info(
f"Running Agent {agent.agent_name} on task: {task}"
)
result = agent.run(task, *args, **kwargs)
self.output_schema.agent_outputs.append(
agent.agent_output
)
return result
except Exception as e:
logger.error(
f"Error executing agent {agent.agent_name}: {str(e)}"
)
raise
def run(self, task: str, *args, **kwargs):
"""
Executes the given task on the agents in a round-robin fashion.
Args:
task (str): The task to be executed.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
Any: The result of the task execution.
Raises:
ValueError: If no agents are configured
Exception: If an exception occurs during task execution.
"""
if not self.agents:
logger.error("No agents configured for the swarm")
raise ValueError("No agents configured for the swarm")
try:
result = task
self.output_schema.task = task
n = len(self.agents)
logger.info(
f"Starting round-robin execution with task '{task}' on {n} agents"
)
for loop in range(self.max_loops):
logger.debug(
f"Starting loop {loop + 1}/{self.max_loops}"
)
for _ in range(n):
current_agent = self.agents[self.index]
try:
result = self._execute_agent(
current_agent, result, *args, **kwargs
)
finally:
self.index = (self.index + 1) % n
if self.callback:
logger.debug(
f"Executing callback for loop {loop + 1}"
)
try:
self.callback(loop, result)
except Exception as e:
logger.error(
f"Callback execution failed: {str(e)}"
)
logger.success(
f"Successfully completed {self.max_loops} loops of round-robin execution"
)
if self.return_json_on:
return self.export_metadata()
return result
except Exception as e:
logger.error(f"Round-robin execution failed: {str(e)}")
raise
def export_metadata(self):
"""Export the execution metadata as JSON"""
try:
return self.output_schema.model_dump_json(indent=4)
except Exception as e:
logger.error(f"Failed to export metadata: {str(e)}")
raise