cosmos / app.py
harry900000's picture
pip install cosmos-transfer1
ee8cb8c
import os
from typing import List, Tuple
PWD = os.path.dirname(__file__)
import subprocess
subprocess.run("pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True)
try:
import os
from huggingface_hub import login
# Try to login with token from environment variable
hf_token = os.environ["HF_TOKEN"]
if hf_token:
login(token=hf_token)
print("✅ Authenticated with Hugging Face")
else:
print("No HF_TOKEN found, trying without authentication...")
except Exception as e:
print(f"Authentication failed: {e}")
# download checkpoints
from download_checkpoints import main as download_checkpoints
os.makedirs("./checkpoints", exist_ok=True)
download_checkpoints(hf_token="", output_dir="./checkpoints", model="7b_av")
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Workaround to suppress MP warning
import copy
import json
import random
from io import BytesIO
import gradio as gr
import torch
from cosmos_transfer1.checkpoints import (
BASE_7B_CHECKPOINT_AV_SAMPLE_PATH,
BASE_7B_CHECKPOINT_PATH,
EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH,
)
from cosmos_transfer1.diffusion.inference.inference_utils import (
validate_controlnet_specs,
)
from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors
from cosmos_transfer1.diffusion.inference.world_generation_pipeline import (
DiffusionControl2WorldGenerationPipeline,
DistilledControl2WorldGenerationPipeline,
)
from cosmos_transfer1.utils import log, misc
from cosmos_transfer1.utils.io import read_prompts_from_file, save_video
from helper import parse_arguments
torch.enable_grad(False)
torch.serialization.add_safe_globals([BytesIO])
def inference(cfg, control_inputs) -> Tuple[List[str], List[str]]:
video_paths = []
prompt_paths = []
control_inputs = validate_controlnet_specs(cfg, control_inputs)
misc.set_random_seed(cfg.seed)
device_rank = 0
process_group = None
if cfg.num_gpus > 1:
from cosmos_transfer1.utils import distributed
from megatron.core import parallel_state
distributed.init()
parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus)
process_group = parallel_state.get_context_parallel_group()
device_rank = distributed.get_rank(process_group)
preprocessors = Preprocessors()
if cfg.use_distilled:
assert not cfg.is_av_sample
checkpoint = EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH
pipeline = DistilledControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
)
else:
checkpoint = BASE_7B_CHECKPOINT_AV_SAMPLE_PATH if cfg.is_av_sample else BASE_7B_CHECKPOINT_PATH
# Initialize transfer generation model pipeline
pipeline = DiffusionControl2WorldGenerationPipeline(
checkpoint_dir=cfg.checkpoint_dir,
checkpoint_name=checkpoint,
offload_network=cfg.offload_diffusion_transformer,
offload_text_encoder_model=cfg.offload_text_encoder_model,
offload_guardrail_models=cfg.offload_guardrail_models,
guidance=cfg.guidance,
num_steps=cfg.num_steps,
fps=cfg.fps,
seed=cfg.seed,
num_input_frames=cfg.num_input_frames,
control_inputs=control_inputs,
sigma_max=cfg.sigma_max,
blur_strength=cfg.blur_strength,
canny_threshold=cfg.canny_threshold,
upsample_prompt=cfg.upsample_prompt,
offload_prompt_upsampler=cfg.offload_prompt_upsampler,
process_group=process_group,
)
if cfg.batch_input_path:
log.info(f"Reading batch inputs from path: {cfg.batch_input_path}")
prompts = read_prompts_from_file(cfg.batch_input_path)
else:
# Single prompt case
prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_video_path}]
batch_size = cfg.batch_size if hasattr(cfg, "batch_size") else 1
if any("upscale" in control_input for control_input in control_inputs) and batch_size > 1:
batch_size = 1
log.info("Setting batch_size=1 as upscale does not support batch generation")
os.makedirs(cfg.video_save_folder, exist_ok=True)
for batch_start in range(0, len(prompts), batch_size):
# Get current batch
batch_prompts = prompts[batch_start : batch_start + batch_size]
actual_batch_size = len(batch_prompts)
# Extract batch data
batch_prompt_texts = [p.get("prompt", None) for p in batch_prompts]
batch_video_paths = [p.get("visual_input", None) for p in batch_prompts]
batch_control_inputs = []
for i, input_dict in enumerate(batch_prompts):
current_prompt = input_dict.get("prompt", None)
current_video_path = input_dict.get("visual_input", None)
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
os.makedirs(video_save_subfolder, exist_ok=True)
else:
video_save_subfolder = cfg.video_save_folder
current_control_inputs = copy.deepcopy(control_inputs)
if "control_overrides" in input_dict:
for hint_key, override in input_dict["control_overrides"].items():
if hint_key in current_control_inputs:
current_control_inputs[hint_key].update(override)
else:
log.warning(f"Ignoring unknown control key in override: {hint_key}")
# if control inputs are not provided, run respective preprocessor (for seg and depth)
log.info("running preprocessor")
preprocessors(
current_video_path,
current_prompt,
current_control_inputs,
video_save_subfolder,
cfg.regional_prompts if hasattr(cfg, "regional_prompts") else None,
)
batch_control_inputs.append(current_control_inputs)
regional_prompts = []
region_definitions = []
if hasattr(cfg, "regional_prompts") and cfg.regional_prompts:
log.info(f"regional_prompts: {cfg.regional_prompts}")
for regional_prompt in cfg.regional_prompts:
regional_prompts.append(regional_prompt["prompt"])
if "region_definitions_path" in regional_prompt:
log.info(f"region_definitions_path: {regional_prompt['region_definitions_path']}")
region_definition_path = regional_prompt["region_definitions_path"]
if isinstance(region_definition_path, str) and region_definition_path.endswith(".json"):
with open(region_definition_path, "r") as f:
region_definitions_json = json.load(f)
region_definitions.extend(region_definitions_json)
else:
region_definitions.append(region_definition_path)
if hasattr(pipeline, "regional_prompts"):
pipeline.regional_prompts = regional_prompts
if hasattr(pipeline, "region_definitions"):
pipeline.region_definitions = region_definitions
# Generate videos in batch
batch_outputs = pipeline.generate(
prompt=batch_prompt_texts,
video_path=batch_video_paths,
negative_prompt=cfg.negative_prompt,
control_inputs=batch_control_inputs,
save_folder=video_save_subfolder,
batch_size=actual_batch_size,
)
if batch_outputs is None:
log.critical("Guardrail blocked generation for entire batch.")
continue
videos, final_prompts = batch_outputs
for i, (video, prompt) in enumerate(zip(videos, final_prompts)):
if cfg.batch_input_path:
video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}")
video_save_path = os.path.join(video_save_subfolder, "output.mp4")
prompt_save_path = os.path.join(video_save_subfolder, "prompt.txt")
else:
video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")
# Save video and prompt
if device_rank == 0:
os.makedirs(os.path.dirname(video_save_path), exist_ok=True)
save_video(
video=video,
fps=cfg.fps,
H=video.shape[1],
W=video.shape[2],
video_save_quality=5,
video_save_path=video_save_path,
)
video_paths.append(video_save_path)
# Save prompt to text file alongside video
with open(prompt_save_path, "wb") as f:
f.write(prompt.encode("utf-8"))
prompt_paths.append(prompt_save_path)
log.info(f"Saved video to {video_save_path}")
log.info(f"Saved prompt to {prompt_save_path}")
# clean up properly
if cfg.num_gpus > 1:
parallel_state.destroy_model_parallel()
import torch.distributed as dist
dist.destroy_process_group()
return video_paths, prompt_paths
def generate_video(
hdmap_video_input,
lidar_video_input,
prompt,
negative_prompt="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality.", # noqa: E501
seed=42,
randomize_seed=False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
actual_seed = random.randint(0, 1000000)
else:
actual_seed = seed
args, control_inputs = parse_arguments(
controlnet_specs_in={
"hdmap": {"control_weight": 0.3, "input_control": hdmap_video_input},
"lidar": {"control_weight": 0.7, "input_control": lidar_video_input},
},
checkpoint_dir="./cosmos-transfer1/checkpoints",
prompt=prompt,
negative_prompt=negative_prompt,
sigma_max=80,
offload_text_encoder_model=True,
is_av_sample=True,
num_gpus=1,
seed=seed,
)
videos, prompts = inference(args, control_inputs)
video = videos[0]
return video, video, actual_seed
# Define the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Cosmos-Transfer1-7B-Sample-AV
"""
)
with gr.Row():
with gr.Column():
hdmap_input = gr.Video(label="Input HD Map Video", format="mp4")
lidar_input = gr.Video(label="Input LiDAR Video", format="mp4")
prompt_input = gr.Textbox(
label="Prompt",
lines=5,
value="A close-up shot captures a vibrant yellow scrubber vigorously working on a grimy plate, its bristles moving in circular motions to lift stubborn grease and food residue. The dish, once covered in remnants of a hearty meal, gradually reveals its original glossy surface. Suds form and bubble around the scrubber, creating a satisfying visual of cleanliness in progress. The sound of scrubbing fills the air, accompanied by the gentle clinking of the dish against the sink. As the scrubber continues its task, the dish transforms, gleaming under the bright kitchen lights, symbolizing the triumph of cleanliness over mess.", # noqa: E501
placeholder="Enter your descriptive prompt here...",
)
negative_prompt_input = gr.Textbox(
label="Negative Prompt",
lines=3,
value="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality.", # noqa: E501
placeholder="Enter what you DON'T want to see in the image...",
)
with gr.Row():
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
seed_input = gr.Slider(minimum=0, maximum=1000000, value=1, step=1, label="Seed")
generate_button = gr.Button("Generate Image")
with gr.Column():
output_video = gr.Video(label="Generated Video", format="mp4")
output_file = gr.File(label="Download Video")
generate_button.click(
fn=generate_video,
inputs=[hdmap_input, lidar_input, prompt_input, negative_prompt_input, seed_input, randomize_seed_checkbox],
outputs=[output_video, output_file, seed_input],
)
if __name__ == "__main__":
demo.launch()