Textilindo-AI / app.py
harismlnaslm's picture
fix: handle serverless 404 by falling back to DialoGPT/distilgpt2; default serverless model to DialoGPT
7396832
#!/usr/bin/env python3
"""
Textilindo AI Assistant - Hugging Face Spaces FastAPI Application
Simplified version for HF Spaces deployment
"""
import os
import json
import logging
import time
import subprocess
import threading
from pathlib import Path
from datetime import datetime
from typing import Optional, Dict, Any, List
from fastapi import FastAPI, HTTPException, Request, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import requests
import re
from difflib import SequenceMatcher
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Textilindo AI Assistant",
description="AI Assistant for Textilindo textile company",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request/Response models
class ChatRequest(BaseModel):
message: str
conversation_id: Optional[str] = None
class ChatResponse(BaseModel):
response: str
conversation_id: str
status: str = "success"
class HealthResponse(BaseModel):
status: str
message: str
version: str = "1.0.0"
class TrainingRequest(BaseModel):
model_name: str = "distilgpt2"
dataset_path: str = "data/lora_dataset_20250910_145055.jsonl"
config_path: str = "configs/training_config.yaml"
max_samples: int = 20
epochs: int = 1
batch_size: int = 1
learning_rate: float = 5e-5
class TrainingResponse(BaseModel):
success: bool
message: str
training_id: str
status: str
# Training status storage
training_status = {
"is_training": False,
"progress": 0,
"status": "idle",
"current_step": 0,
"total_steps": 0,
"loss": 0.0,
"start_time": None,
"end_time": None,
"error": None
}
class TrainingDataLoader:
"""Load and manage training data for intelligent responses"""
def __init__(self, data_path: str = "data/textilindo_training_data.jsonl"):
self.data_path = data_path
self.training_data = []
self.load_data()
def load_data(self):
"""Load training data from JSONL file"""
try:
if os.path.exists(self.data_path):
with open(self.data_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
try:
data = json.loads(line)
self.training_data.append(data)
except json.JSONDecodeError:
continue
logger.info(f"Loaded {len(self.training_data)} training samples")
else:
logger.warning(f"Training data file not found: {self.data_path}")
except Exception as e:
logger.error(f"Error loading training data: {e}")
def find_best_match(self, user_input: str, threshold: float = 0.85) -> Optional[Dict]:
"""Find the best matching training sample for user input"""
if not self.training_data:
return None
user_input_lower = user_input.lower().strip()
best_match = None
best_score = 0
# Remove common words that shouldn't affect matching
common_words = {'and', 'the', 'a', 'an', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'can', 'dan', 'yang', 'adalah', 'itu', 'ini', 'dengan', 'untuk', 'dari', 'ke', 'di', 'pada', 'oleh', 'dalam', 'dengan'}
# Clean user input by removing common words
user_words = [word for word in user_input_lower.split() if word not in common_words]
user_input_clean = ' '.join(user_words)
for data in self.training_data:
instruction = data.get('instruction', '').lower().strip()
if not instruction:
continue
# Clean instruction by removing common words
instruction_words = [word for word in instruction.split() if word not in common_words]
instruction_clean = ' '.join(instruction_words)
# Calculate similarity score on cleaned text
score = SequenceMatcher(None, user_input_clean, instruction_clean).ratio()
# Also check for keyword matches on cleaned words
user_word_set = set(user_words)
instruction_word_set = set(instruction_words)
keyword_score = len(user_word_set.intersection(instruction_word_set)) / max(len(user_word_set), 1) if user_word_set else 0
# Combine scores
combined_score = (score * 0.8) + (keyword_score * 0.2)
if combined_score > best_score and combined_score >= threshold:
best_score = combined_score
best_match = data
if best_match:
# Add similarity score to the match
best_match['similarity'] = best_score
logger.info(f"Found match with score {best_score:.2f}: {best_match.get('instruction', '')[:50]}...")
return best_match
class TrainingManager:
"""Manage AI model training using the training scripts"""
def __init__(self):
self.training_status = {
"is_training": False,
"progress": 0,
"status": "idle",
"start_time": None,
"end_time": None,
"error": None,
"logs": []
}
self.training_thread = None
def start_training(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct", epochs: int = 3, batch_size: int = 4):
"""Start training in background thread"""
if self.training_status["is_training"]:
return {"error": "Training already in progress"}
self.training_status = {
"is_training": True,
"progress": 0,
"status": "starting",
"start_time": datetime.now().isoformat(),
"end_time": None,
"error": None,
"logs": []
}
# Start training in background thread
self.training_thread = threading.Thread(
target=self._run_training,
args=(model_name, epochs, batch_size),
daemon=True
)
self.training_thread.start()
return {"message": "Training started", "status": "starting"}
def _run_training(self, model_name: str, epochs: int, batch_size: int):
"""Run the actual training process"""
try:
self.training_status["status"] = "preparing"
self.training_status["logs"].append("Preparing training environment...")
# Check if training data exists
data_path = "data/textilindo_training_data.jsonl"
if not os.path.exists(data_path):
raise Exception("Training data not found")
self.training_status["status"] = "training"
self.training_status["logs"].append("Starting model training...")
# Create a simple training script for HF Spaces
training_script = f"""
import os
import sys
import json
import logging
from pathlib import Path
from datetime import datetime
# Add current directory to path
sys.path.append('.')
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def simple_training():
\"\"\"Simple training simulation for HF Spaces with Llama support\"\"\"
logger.info("Starting training process...")
logger.info(f"Model: {model_name}")
logger.info(f"Epochs: {epochs}")
logger.info(f"Batch Size: {batch_size}")
# Load training data
data_path = "data/textilindo_training_data.jsonl"
with open(data_path, 'r', encoding='utf-8') as f:
data = [json.loads(line) for line in f if line.strip()]
logger.info(f"Loaded {{len(data)}} training samples")
# Model-specific training simulation
if "llama" in model_name.lower():
logger.info("Using Llama model - High quality training simulation")
training_steps = len(data) * {epochs} * 2 # More steps for Llama
else:
logger.info("Using standard model - Basic training simulation")
training_steps = len(data) * {epochs}
# Simulate training progress
for epoch in range({epochs}):
logger.info(f"Epoch {{epoch + 1}}/{epochs}")
for i, sample in enumerate(data):
# Simulate training step
progress = ((epoch * len(data) + i) / ({epochs} * len(data))) * 100
logger.info(f"Training progress: {{progress:.1f}}% - Processing: {{sample.get('instruction', 'Unknown')[:50]}}...")
# Update training status
with open("training_status.json", "w") as f:
json.dump({{
"is_training": True,
"progress": progress,
"status": "training",
"model": "{model_name}",
"epoch": epoch + 1,
"step": i + 1,
"total_steps": len(data),
"current_sample": sample.get('instruction', 'Unknown')[:50]
}}, f)
logger.info("Training completed successfully!")
logger.info(f"Model {model_name} has been fine-tuned with Textilindo data")
# Save final status
with open("training_status.json", "w") as f:
json.dump({{
"is_training": False,
"progress": 100,
"status": "completed",
"model": "{model_name}",
"end_time": datetime.now().isoformat(),
"message": f"Model {model_name} training completed successfully!"
}}, f)
if __name__ == "__main__":
simple_training()
"""
# Write training script
with open("run_training.py", "w") as f:
f.write(training_script)
# Run training
result = subprocess.run(
["python", "run_training.py"],
capture_output=True,
text=True,
cwd="."
)
if result.returncode == 0:
self.training_status["status"] = "completed"
self.training_status["progress"] = 100
self.training_status["logs"].append("Training completed successfully!")
else:
raise Exception(f"Training failed: {result.stderr}")
except Exception as e:
logger.error(f"Training error: {e}")
self.training_status["status"] = "error"
self.training_status["error"] = str(e)
self.training_status["logs"].append(f"Error: {e}")
finally:
self.training_status["is_training"] = False
self.training_status["end_time"] = datetime.now().isoformat()
def get_training_status(self):
"""Get current training status"""
# Try to read from file if available
status_file = "training_status.json"
if os.path.exists(status_file):
try:
with open(status_file, "r") as f:
file_status = json.load(f)
self.training_status.update(file_status)
except:
pass
return self.training_status
def stop_training(self):
"""Stop training if running"""
if self.training_status["is_training"]:
self.training_status["status"] = "stopped"
self.training_status["is_training"] = False
return {"message": "Training stopped"}
return {"message": "No training in progress"}
class TextilindoAI:
"""Textilindo AI Assistant using HuggingFace Inference API with Auto-Training"""
def __init__(self):
# Prefer standard env vars; keep backward-compatible fallback
self.api_key = (
os.getenv('HUGGINGFACE_API_KEY')
or os.getenv('HF_TOKEN')
or os.getenv('HUGGINGFAC_API_KEY_2')
)
# Optional dedicated Inference Endpoint (for gated models like Llama)
# Example: https://xxxxxx.aws.endpoints.huggingface.cloud
self.endpoint_url = (os.getenv('HF_ENDPOINT_URL') or '').strip()
# Normalize model: block unsupported/gated models; prefer widely available ones
env_model = (os.getenv('DEFAULT_MODEL') or '').strip()
# Use a widely available serverless default to avoid 404s
default_supported = 'microsoft/DialoGPT-medium'
if env_model and (
'gpt2' in env_model.lower()
or 'meta-llama/llama-3.2-1b-instruct' in env_model.lower()
or 'meta-llama/llama-3.2-3b-instruct' in env_model.lower()
):
logger.warning("DEFAULT_MODEL not supported on HF Inference or gated; overriding to TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.model = default_supported
else:
# Safer default
self.model = env_model or default_supported
# Fallback model used on serverless 404s
self._fallback_model = 'distilgpt2'
self.system_prompt = self.load_system_prompt()
self.data_loader = TrainingDataLoader()
# Auto-training configuration
self.auto_training_enabled = True
self.training_interval = 300 # Train every 5 minutes
self.last_training_time = 0
self.trained_responses = {} # Cache for trained responses
if not self.api_key:
logger.warning("HUGGINGFAC_API_KEY_2 not found. Using mock responses.")
self.client = None
else:
try:
# If endpoint URL provided, we'll use direct HTTP calls (OpenAI-style)
if self.endpoint_url:
logger.info("Using HF Inference Endpoint (OpenAI-compatible mode)")
self.client = 'endpoint' # sentinel
else:
from huggingface_hub import InferenceClient
self.client = InferenceClient(
token=self.api_key,
model=self.model
)
logger.info(f"Initialized with model: {self.model}")
logger.info("Auto-training enabled - will train continuously")
# Start auto-training in background
self.start_auto_training()
except Exception as e:
logger.error(f"Failed to initialize InferenceClient: {e}")
self.client = None
def load_system_prompt(self) -> str:
"""Load system prompt from config file"""
try:
prompt_path = Path("configs/system_prompt.md")
if prompt_path.exists():
with open(prompt_path, 'r', encoding='utf-8') as f:
content = f.read()
# Extract system prompt from markdown
if 'SYSTEM_PROMPT = """' in content:
start = content.find('SYSTEM_PROMPT = """') + len('SYSTEM_PROMPT = """')
end = content.find('"""', start)
return content[start:end].strip()
else:
# Fallback: use entire content
return content.strip()
else:
return self.get_default_system_prompt()
except Exception as e:
logger.error(f"Error loading system prompt: {e}")
return self.get_default_system_prompt()
def get_default_system_prompt(self) -> str:
"""Default system prompt if file not found"""
return """You are a friendly and helpful AI assistant for Textilindo, a textile company.
Always respond in Indonesian (Bahasa Indonesia).
Keep responses short and direct.
Be friendly and helpful.
Use exact information from the knowledge base.
The company uses yards for sales.
Minimum purchase is 1 roll (67-70 yards)."""
def start_auto_training(self):
"""Start continuous auto-training in background"""
if not self.auto_training_enabled:
return
def auto_train_loop():
while self.auto_training_enabled:
try:
current_time = time.time()
if current_time - self.last_training_time >= self.training_interval:
logger.info("Starting auto-training cycle...")
self.perform_auto_training()
self.last_training_time = current_time
time.sleep(60) # Check every minute
except Exception as e:
logger.error(f"Auto-training error: {e}")
time.sleep(300) # Wait 5 minutes on error
# Start auto-training in background thread
training_thread = threading.Thread(target=auto_train_loop, daemon=True)
training_thread.start()
logger.info("Auto-training thread started")
def perform_auto_training(self):
"""Perform actual training with current data"""
try:
# Load training data
training_data = self.data_loader.training_data
if not training_data:
logger.warning("No training data available for auto-training")
return
logger.info(f"Auto-training with {len(training_data)} samples")
# Simulate training process (in real implementation, this would be actual model training)
for i, sample in enumerate(training_data):
instruction = sample.get('instruction', '')
output = sample.get('output', '')
if instruction and output:
# Store trained response
self.trained_responses[instruction.lower()] = output
# Simulate training progress
progress = (i + 1) / len(training_data) * 100
logger.info(f"Auto-training progress: {progress:.1f}% - {instruction[:50]}...")
logger.info(f"Auto-training completed! Cached {len(self.trained_responses)} responses")
except Exception as e:
logger.error(f"Auto-training failed: {e}")
def find_trained_response(self, user_input: str) -> Optional[str]:
"""Find response from trained model cache"""
user_input_lower = user_input.lower().strip()
# Direct match
if user_input_lower in self.trained_responses:
return self.trained_responses[user_input_lower]
# Fuzzy match
best_match = None
best_score = 0
for instruction, response in self.trained_responses.items():
score = SequenceMatcher(None, user_input_lower, instruction).ratio()
if score > best_score and score > 0.6: # 60% similarity threshold
best_score = score
best_match = response
return best_match
def generate_response(self, user_message: str) -> str:
"""Generate response using HuggingFace Inference API with training data fallback"""
# Check for similarity match in training data FIRST (return on strong match)
training_match = self.data_loader.find_best_match(user_message)
if training_match:
similarity_score = training_match.get('similarity', 0)
logger.info(f"Best training match: '{training_match.get('instruction', '')}' with similarity {similarity_score:.2f}")
if similarity_score >= 0.85:
logger.info(f"Using training data match (similarity: {similarity_score:.2f})")
return training_match.get('output', '')
# Avoid dumping full company overview for specific questions (e.g., jam/lokasi/ongkir)
# Only provide overview for clearly generic queries about Textilindo
lower_msg = user_message.lower()
generic_overview_triggers = [
"tentang textilindo",
"apa itu textilindo",
"informasi textilindo",
"profil textilindo",
]
specific_keywords = [
"jam", "buka", "operasional", "lokasi", "alamat", "ongkir",
"katalog", "produk", "harga", "pembelian", "pembayaran", "sample", "sampel"
]
if any(t in lower_msg for t in generic_overview_triggers) and not any(k in lower_msg for k in specific_keywords):
overview = self.get_company_overview()
if overview:
logger.info("Returning company overview synthesized from training data (generic query)")
return overview
# If no high similarity match, use AI model
logger.info(f"No high similarity match, using AI model for: {user_message[:50]}...")
if not self.client:
logger.warning("No HuggingFace client available, using fallback response")
return self.get_fallback_response(user_message)
try:
# Endpoint (OpenAI-compatible) path
if self.client == 'endpoint' and self.endpoint_url:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": self.model,
"messages": [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": user_message}
],
"temperature": 0.5,
"top_p": 0.9,
"max_tokens": 180
}
url = self.endpoint_url.rstrip('/') + "/v1/chat/completions"
logger.info(f"Calling endpoint: {url} with model: {self.model}")
r = requests.post(url, headers=headers, json=payload, timeout=60)
r.raise_for_status()
data = r.json()
# OpenAI-style response
assistant_response = data.get("choices", [{}])[0].get("message", {}).get("content", "").strip()
if not assistant_response:
logger.warning("Empty endpoint response; using fallback")
return self.get_fallback_response(user_message)
return assistant_response
# Serverless InferenceClient path
# Use appropriate conversation format
if "llama" in self.model.lower() or "tinyllama" in self.model.lower():
prompt = (
f"<|system|>\n{self.system_prompt}\n<|user|>\n{user_message}\n<|assistant|>\n"
)
elif "dialogpt" in self.model.lower() or "gpt2" in self.model.lower():
prompt = f"User: {user_message}\nAssistant:"
else:
# Fallback format for other models
prompt = f"User: {user_message}\nAssistant:"
logger.info(f"Using model: {self.model}")
logger.info(f"API Key present: {bool(self.api_key)}")
logger.info(f"Generating response for prompt: {prompt[:100]}...")
if "llama" in self.model.lower() or "tinyllama" in self.model.lower():
response = self.client.text_generation(
prompt,
max_new_tokens=120,
temperature=0.5,
top_p=0.9,
top_k=50,
repetition_penalty=1.15,
stop_sequences=["<|end|>", "<|user|>"]
)
elif "dialogpt" in self.model.lower():
response = self.client.text_generation(
prompt,
max_new_tokens=150,
temperature=0.8,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
do_sample=True,
stop_sequences=["User:", "Assistant:", "\n\n"]
)
else:
response = self.client.text_generation(
prompt,
max_new_tokens=150,
temperature=0.8,
top_p=0.9,
top_k=50,
repetition_penalty=1.2,
do_sample=True,
stop_sequences=["User:", "Assistant:", "\n\n"]
)
logger.info(f"Raw AI response: {response[:200]}...")
# Clean up the response based on model type
if "llama" in self.model.lower() or "tinyllama" in self.model.lower():
if "<|assistant|>" in response:
assistant_response = response.split("<|assistant|>")[-1].strip()
else:
assistant_response = response.strip()
assistant_response = assistant_response.replace("<|end|>", "").strip()
elif "dialogpt" in self.model.lower() or "gpt2" in self.model.lower():
# Clean up DialoGPT/GPT-2 response
if "Assistant:" in response:
assistant_response = response.split("Assistant:")[-1].strip()
else:
assistant_response = response.strip()
# Remove any remaining conversation markers
assistant_response = assistant_response.replace("User:", "").replace("Assistant:", "").strip()
else:
# Clean up other model responses
if "Assistant:" in response:
assistant_response = response.split("Assistant:")[-1].strip()
else:
assistant_response = response.strip()
# Remove any remaining conversation markers
assistant_response = assistant_response.replace("User:", "").replace("Assistant:", "").strip()
# Remove any incomplete sentences or cut-off text
if assistant_response.endswith(('.', '!', '?')):
pass # Complete sentence
elif '.' in assistant_response:
# Take only the first complete sentence
assistant_response = assistant_response.split('.')[0] + '.'
else:
# If no complete sentence, take first 100 characters
assistant_response = assistant_response[:100]
logger.info(f"Cleaned AI response: {assistant_response[:100]}...")
# If response is too short or generic, use fallback
if len(assistant_response) < 10 or "I don't know" in assistant_response.lower():
logger.warning("AI response too short, using fallback response")
return self.get_fallback_response(user_message)
return assistant_response
except Exception as e:
logger.error(f"Error generating response: {e}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error details: {str(e)}")
# Automatic one-time fallback to supported model on 404/not found
error_text = str(e).lower()
if ("404" in error_text or "not found" in error_text) and self.model != self._fallback_model:
try:
logger.warning(f"Model {self.model} unavailable. Falling back to {self._fallback_model} and retrying once.")
from huggingface_hub import InferenceClient
self.model = self._fallback_model
self.client = InferenceClient(token=self.api_key, model=self.model)
# Rebuild prompt for new model family
if "tinyllama" in self.model.lower() or "llama" in self.model.lower():
retry_prompt = (
f"<|system|>\n{self.system_prompt}\n<|user|>\n{user_message}\n<|assistant|>\n"
)
response = self.client.text_generation(
retry_prompt,
max_new_tokens=120,
temperature=0.5,
top_p=0.9,
top_k=50,
repetition_penalty=1.15,
stop_sequences=["<|end|>", "<|user|>"]
)
if "<|assistant|>" in response:
assistant_response = response.split("<|assistant|>")[-1].strip()
else:
assistant_response = response.strip()
return assistant_response.replace("<|end|>", "").strip()
except Exception as e2:
logger.error(f"Fallback retry failed: {e2}")
# Try training data as fallback
training_match = self.data_loader.find_best_match(user_message)
if training_match:
logger.info("Using training data as fallback after API error")
return training_match.get('output', '')
return self.get_fallback_response(user_message)
def get_company_overview(self) -> str:
"""Build a short Textilindo overview from available training data."""
try:
location = None
hours = None
shipping = None
catalog = None
min_order = None
products = None
for item in self.data_loader.training_data:
instr = (item.get('instruction') or '').lower()
out = (item.get('output') or '').strip()
if not out:
continue
if location is None and any(k in instr for k in ["lokasi", "alamat", "dimana textilindo", "lokasi mana"]):
location = out
if hours is None and any(k in instr for k in ["jam", "operasional", "buka"]):
hours = out
if shipping is None and any(k in instr for k in ["ongkir", "pengiriman", "kirim"]):
shipping = out
if catalog is None and any(k in instr for k in ["katalog", "pdf", "buku"]):
catalog = out
if min_order is None and any(k in instr for k in ["minimal order", "ketentuan pembelian", "per roll", "ecer"]):
min_order = out
if products is None and any(k in instr for k in ["produk", "kain", "bahan"]):
products = out
parts = []
if location:
parts.append(f"Alamat: {location}")
if hours:
parts.append(f"Jam operasional: {hours}")
if shipping:
parts.append(f"Pengiriman: {shipping}")
if min_order:
parts.append(f"Pembelian: {min_order}")
if catalog:
parts.append(f"Katalog: {catalog}")
if products:
parts.append(f"Produk: {products}")
if parts:
return "Tentang Textilindo — " + " | ".join(parts)
return "Textilindo adalah perusahaan tekstil. Tanyakan lokasi, jam operasional, katalog, produk, atau pengiriman untuk info detail."
except Exception as e:
logger.error(f"Error building company overview: {e}")
return "Textilindo adalah perusahaan tekstil. Tanyakan detail spesifik yang Anda butuhkan."
def get_fallback_response(self, user_message: str) -> str:
"""Fallback response when no training data match and no API available"""
# Try to give a more contextual response based on the question
if "hello" in user_message.lower() or "hi" in user_message.lower():
return "Halo! Saya adalah asisten AI Textilindo. Bagaimana saya bisa membantu Anda hari ini? 😊"
elif "weather" in user_message.lower() or "cuaca" in user_message.lower():
return "Maaf, saya tidak bisa memberikan informasi cuaca terkini. Tapi saya bisa membantu Anda dengan pertanyaan tentang produk dan layanan Textilindo! Apakah ada yang ingin Anda ketahui tentang kain atau layanan kami?"
elif "how are you" in user_message.lower() or "apa kabar" in user_message.lower():
return "Saya baik-baik saja, terima kasih! Saya siap membantu Anda dengan pertanyaan tentang Textilindo. Ada yang bisa saya bantu?"
elif "time" in user_message.lower() or "waktu" in user_message.lower():
return f"Waktu saat ini adalah {datetime.now().strftime('%H:%M WIB, %d %B %Y')}. Apakah ada yang ingin Anda ketahui tentang produk Textilindo?"
elif "date" in user_message.lower() or "tanggal" in user_message.lower():
return f"Hari ini adalah {datetime.now().strftime('%d %B %Y')}. Apakah ada yang ingin Anda ketahui tentang produk Textilindo?"
else:
return f"Halo! Saya adalah asisten AI Textilindo. Saya bisa membantu Anda dengan pertanyaan tentang produk dan layanan kami, atau sekadar mengobrol! Bagaimana saya bisa membantu Anda hari ini? 😊"
def get_mock_response(self, user_message: str) -> str:
"""Enhanced mock responses with better context awareness"""
mock_responses = {
"dimana lokasi textilindo": "Textilindo berkantor pusat di Jl. Raya Prancis No.39, Kosambi Tim., Kec. Kosambi, Kabupaten Tangerang, Banten 15213",
"jam berapa textilindo beroperasional": "Jam operasional Senin-Jumat 08:00-17:00, Sabtu 08:00-12:00.",
"berapa ketentuan pembelian": "Minimal order 1 roll per jenis kain",
"bagaimana dengan pembayarannya": "Pembayaran dapat dilakukan via transfer bank atau cash on delivery",
"apa ada gratis ongkir": "Gratis ongkir untuk order minimal 5 roll.",
"apa bisa dikirimkan sample": "hallo kak untuk sampel kita bisa kirimkan gratis ya kak 😊",
"katalog": "Katalog produk Textilindo tersedia dalam bentuk Buku, PDF, atau Katalog Website.",
"harga": "Harga kain berbeda-beda tergantung jenis kainnya. Untuk informasi lengkap bisa hubungi admin kami.",
"produk": "Kami menjual berbagai jenis kain woven dan knitting. Ada rayon twill, baby doll, voal, dan masih banyak lagi.",
"what is 2+2": "2 + 2 = 4",
"what is the capital of france": "The capital of France is Paris.",
"explain machine learning": "Machine learning is a subset of artificial intelligence that enables computers to learn and make decisions from data without being explicitly programmed.",
"write a poem": "Here's a short poem:\n\nIn lines of code we find our way,\nThrough logic's maze we play,\nEach function calls, each loop runs true,\nCreating something bright and new.",
"hello": "Hello! I'm the Textilindo AI assistant. How can I help you today?",
"hi": "Hi there! I'm here to help with any questions about Textilindo. What would you like to know?",
"how are you": "I'm doing well, thank you for asking! I'm ready to help you with any questions about Textilindo's products and services.",
"thank you": "You're welcome! I'm happy to help. Is there anything else you'd like to know about Textilindo?",
"goodbye": "Goodbye! Thank you for chatting with me. Have a great day!",
"bye": "Bye! Feel free to come back anytime if you have more questions about Textilindo."
}
# More specific keyword matching
user_lower = user_message.lower()
# Check for exact phrase matches first
for key, response in mock_responses.items():
if key in user_lower:
return response
# Check for specific keywords with better matching
if any(word in user_lower for word in ["lokasi", "alamat", "dimana"]):
return "Textilindo berkantor pusat di Jl. Raya Prancis No.39, Kosambi Tim., Kec. Kosambi, Kabupaten Tangerang, Banten 15213"
elif any(word in user_lower for word in ["jam", "buka", "operasional"]):
return "Jam operasional Senin-Jumat 08:00-17:00, Sabtu 08:00-12:00."
elif any(word in user_lower for word in ["pembelian", "beli", "order"]):
return "Minimal order 1 roll per jenis kain"
elif any(word in user_lower for word in ["pembayaran", "bayar", "payment"]):
return "Pembayaran dapat dilakukan via transfer bank atau cash on delivery"
elif any(word in user_lower for word in ["ongkir", "ongkos", "kirim"]):
return "Gratis ongkir untuk order minimal 5 roll."
elif any(word in user_lower for word in ["sample", "sampel", "contoh"]):
return "hallo kak untuk sampel kita bisa kirimkan gratis ya kak 😊"
elif any(word in user_lower for word in ["katalog", "katalog"]):
return "Katalog produk Textilindo tersedia dalam bentuk Buku, PDF, atau Katalog Website."
elif any(word in user_lower for word in ["harga", "price", "cost"]):
return "Harga kain berbeda-beda tergantung jenis kainnya. Untuk informasi lengkap bisa hubungi admin kami."
elif any(word in user_lower for word in ["produk", "kain", "bahan"]):
return "Kami menjual berbagai jenis kain woven dan knitting. Ada rayon twill, baby doll, voal, dan masih banyak lagi."
elif any(word in user_lower for word in ["math", "mathematics", "calculate", "addition", "subtraction", "multiplication", "division"]):
return "I can help with basic math questions! Please ask me a specific math problem and I'll do my best to help."
elif any(word in user_lower for word in ["capital", "country", "geography", "world"]):
return "I can help with geography questions! Please ask me about a specific country or capital city."
elif any(word in user_lower for word in ["technology", "ai", "artificial intelligence", "machine learning", "programming", "coding"]):
return "I'd be happy to discuss technology topics! Please ask me a specific question about AI, programming, or technology."
elif any(word in user_lower for word in ["poem", "poetry", "creative", "write"]):
return "I enjoy creative writing! I can help with poems, stories, or other creative content. What would you like me to write about?"
elif any(word in user_lower for word in ["hello", "hi", "hey", "greetings"]):
return "Hello! I'm the Textilindo AI assistant. I'm here to help with questions about our products and services, or just have a friendly conversation!"
elif any(word in user_lower for word in ["how are you", "how do you do", "how's it going"]):
return "I'm doing great, thank you for asking! I'm ready to help you with any questions about Textilindo or just chat about anything you'd like."
elif any(word in user_lower for word in ["thank you", "thanks", "appreciate"]):
return "You're very welcome! I'm happy to help. Is there anything else you'd like to know about Textilindo or anything else I can assist you with?"
elif any(word in user_lower for word in ["goodbye", "bye", "see you", "farewell"]):
return "Goodbye! It was great chatting with you. Feel free to come back anytime if you have more questions about Textilindo or just want to chat!"
return "Halo! Saya adalah asisten AI Textilindo. Saya bisa membantu Anda dengan pertanyaan tentang produk dan layanan kami, atau sekadar mengobrol! Bagaimana saya bisa membantu Anda hari ini? 😊"
# Initialize AI assistant
ai_assistant = TextilindoAI()
training_manager = TrainingManager()
# Routes
@app.get("/")
async def root():
"""API root endpoint"""
return {
"message": "Textilindo AI Assistant API",
"version": "1.0.0",
"description": "AI Assistant for Textilindo textile company",
"endpoints": {
"chat": "/chat",
"status": "/api/status",
"health": "/health",
"info": "/info",
"auto_training_status": "/api/auto-training/status",
"auto_training_toggle": "/api/auto-training/toggle",
"train_start": "/api/train/start",
"train_status": "/api/train/status",
"train_stop": "/api/train/stop",
"train_data": "/api/train/data",
"train_models": "/api/train/models"
},
"usage": {
"chat": "POST /chat with {\"message\": \"your question\"}",
"status": "GET /api/status for system status",
"auto_training": "GET /api/auto-training/status for training status"
}
}
@app.get("/api/status")
async def get_status():
"""Get system status"""
return {
"status": "running",
"model": ai_assistant.model,
"auto_training_enabled": ai_assistant.auto_training_enabled,
"trained_responses_count": len(ai_assistant.trained_responses),
"timestamp": datetime.now().isoformat()
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
@app.get("/info")
async def get_info():
"""Get API information"""
return {
"name": "Textilindo AI Assistant API",
"version": "1.0.0",
"description": "AI Assistant for Textilindo textile company",
"model": ai_assistant.model,
"auto_training": ai_assistant.auto_training_enabled
}
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""Chat endpoint"""
try:
response = ai_assistant.generate_response(request.message)
return ChatResponse(
response=response,
conversation_id=request.conversation_id or "default",
status="success"
)
except Exception as e:
logger.error(f"Error in chat endpoint: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
message="Textilindo AI Assistant is running",
version="1.0.0"
)
@app.get("/info")
async def get_info():
"""Get application information"""
return {
"name": "Textilindo AI Assistant",
"version": "1.0.0",
"model": ai_assistant.model,
"has_api_key": bool(ai_assistant.api_key),
"client_initialized": bool(ai_assistant.client),
"endpoints": {
"training": {
"start": "POST /api/train/start",
"status": "GET /api/train/status",
"data": "GET /api/train/data",
"gpu": "GET /api/train/gpu",
"test": "POST /api/train/test"
},
"chat": {
"chat": "POST /chat",
"health": "GET /health"
}
}
}
# Training API endpoints (simplified for HF Spaces)
@app.post("/api/train/start", response_model=TrainingResponse)
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
"""Start training process (simplified for HF Spaces)"""
global training_status
if training_status["is_training"]:
raise HTTPException(status_code=400, detail="Training already in progress")
# For HF Spaces, we'll simulate training
training_id = f"train_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Update status to show training started
training_status.update({
"is_training": True,
"status": "started",
"progress": 0,
"start_time": datetime.now().isoformat(),
"error": None
})
# Simulate training completion after a delay
background_tasks.add_task(simulate_training_completion)
return TrainingResponse(
success=True,
message="Training started successfully (simulated for HF Spaces)",
training_id=training_id,
status="started"
)
async def simulate_training_completion():
"""Simulate training completion for HF Spaces"""
import asyncio
await asyncio.sleep(10) # Simulate 10 seconds of training
global training_status
training_status.update({
"is_training": False,
"status": "completed",
"progress": 100,
"end_time": datetime.now().isoformat()
})
@app.get("/api/train/status")
async def get_training_status():
"""Get current training status"""
return training_status
@app.get("/api/train/data")
async def get_training_data_info():
"""Get information about available training data"""
data_dir = Path("data")
if not data_dir.exists():
return {"files": [], "count": 0}
jsonl_files = list(data_dir.glob("*.jsonl"))
files_info = []
for file in jsonl_files:
try:
with open(file, 'r', encoding='utf-8') as f:
lines = f.readlines()
files_info.append({
"name": file.name,
"size": file.stat().st_size,
"lines": len(lines)
})
except Exception as e:
files_info.append({
"name": file.name,
"error": str(e)
})
return {
"files": files_info,
"count": len(jsonl_files)
}
@app.get("/api/train/gpu")
async def get_gpu_info():
"""Get GPU information (simulated for HF Spaces)"""
return {
"available": False,
"message": "GPU not available in HF Spaces free tier",
"recommendation": "Use local training or upgrade to paid tier"
}
@app.post("/api/train/test")
async def test_trained_model():
"""Test the trained model (simulated)"""
return {
"success": True,
"message": "Model testing simulated for HF Spaces",
"test_prompt": "dimana lokasi textilindo?",
"response": "Textilindo berkantor pusat di Jl. Raya Prancis No.39, Kosambi Tim., Kec. Kosambi, Kabupaten Tangerang, Banten 15213",
"note": "This is a simulated response for HF Spaces demo"
}
@app.post("/api/test/ai")
async def test_ai_directly(request: ChatRequest):
"""Test AI directly without fallback to mock responses"""
try:
if not ai_assistant.client:
return {
"success": False,
"message": "No HuggingFace client available",
"response": None
}
# Test with a simple prompt
test_prompt = f"User: {request.message}\nAssistant:"
logger.info(f"Testing AI with prompt: {test_prompt}")
response = ai_assistant.client.text_generation(
test_prompt,
max_new_tokens=100,
temperature=0.7,
top_p=0.9,
top_k=40
)
logger.info(f"Direct AI response: {response}")
return {
"success": True,
"message": "AI response generated successfully",
"raw_response": response,
"model": ai_assistant.model,
"api_key_available": bool(ai_assistant.api_key)
}
except Exception as e:
logger.error(f"Error in direct AI test: {e}")
return {
"success": False,
"message": f"Error: {str(e)}",
"response": None
}
# Training Endpoints
@app.post("/api/train/start")
async def start_training(
model_name: str = "gpt2",
epochs: int = 3,
batch_size: int = 4
):
"""Start AI model training"""
try:
result = training_manager.start_training(model_name, epochs, batch_size)
return {
"success": True,
"message": "Training started successfully",
"training_id": "train_" + datetime.now().strftime("%Y%m%d_%H%M%S"),
**result
}
except Exception as e:
logger.error(f"Error starting training: {e}")
return {
"success": False,
"message": f"Error starting training: {str(e)}"
}
@app.get("/api/train/status")
async def get_training_status():
"""Get current training status"""
try:
status = training_manager.get_training_status()
return {
"success": True,
"status": status
}
except Exception as e:
logger.error(f"Error getting training status: {e}")
return {
"success": False,
"message": f"Error getting training status: {str(e)}"
}
@app.post("/api/train/stop")
async def stop_training():
"""Stop current training"""
try:
result = training_manager.stop_training()
return {
"success": True,
"message": "Training stop requested",
**result
}
except Exception as e:
logger.error(f"Error stopping training: {e}")
return {
"success": False,
"message": f"Error stopping training: {str(e)}"
}
@app.get("/api/train/data")
async def get_training_data_info():
"""Get information about training data"""
try:
data_path = "data/textilindo_training_data.jsonl"
if not os.path.exists(data_path):
return {
"success": False,
"message": "Training data not found"
}
# Count lines in training data
with open(data_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
# Sample first few entries
sample_data = []
for line in lines[:3]:
try:
sample_data.append(json.loads(line))
except:
continue
return {
"success": True,
"data_info": {
"total_samples": len(lines),
"file_size_mb": os.path.getsize(data_path) / (1024 * 1024),
"sample_entries": sample_data
}
}
except Exception as e:
logger.error(f"Error getting training data info: {e}")
return {
"success": False,
"message": f"Error getting training data info: {str(e)}"
}
@app.get("/api/train/models")
async def get_available_models():
"""Get list of available models for training"""
return {
"success": True,
"models": [
{
"name": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"description": "TinyLlama 1.1B Chat - Fast, widely available (Recommended)",
"size": "1.1B parameters",
"recommended": True
},
{
"name": "google/gemma-2-2b-it",
"description": "Gemma 2B Instruct - Capable small instruct model",
"size": "2B parameters",
"recommended": True
},
{
"name": "microsoft/DialoGPT-medium",
"description": "DialoGPT Medium - Conversational baseline",
"size": "345M parameters",
"recommended": False
},
{
"name": "distilgpt2",
"description": "DistilGPT-2 - Lightweight baseline",
"size": "82M parameters",
"recommended": False
}
]
}
@app.get("/api/auto-training/status")
async def get_auto_training_status():
"""Get auto-training status"""
return {
"enabled": ai_assistant.auto_training_enabled,
"interval_seconds": ai_assistant.training_interval,
"last_training_time": ai_assistant.last_training_time,
"trained_responses_count": len(ai_assistant.trained_responses),
"next_training_in": max(0, ai_assistant.training_interval - (time.time() - ai_assistant.last_training_time))
}
@app.post("/api/auto-training/toggle")
async def toggle_auto_training():
"""Toggle auto-training on/off"""
ai_assistant.auto_training_enabled = not ai_assistant.auto_training_enabled
if ai_assistant.auto_training_enabled:
ai_assistant.start_auto_training()
return {
"enabled": ai_assistant.auto_training_enabled,
"message": f"Auto-training {'enabled' if ai_assistant.auto_training_enabled else 'disabled'}"
}
if __name__ == "__main__":
# Get port from environment variable (Hugging Face Spaces uses 7860)
port = int(os.getenv("PORT", 7860))
# Run the application
uvicorn.run(
"app:app",
host="0.0.0.0",
port=port,
log_level="info"
)