Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.ensemble import RandomForestClassifier
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
df = pd.read_csv("credit_risk_dataset.csv")
|
7 |
+
|
8 |
+
df = df.dropna()
|
9 |
+
|
10 |
+
df.columns
|
11 |
+
|
12 |
+
X =df.drop(["loan_status", "loan_percent_income"], axis = 1)
|
13 |
+
y = df['loan_status']
|
14 |
+
|
15 |
+
categorical_features = ["person_home_ownership", "loan_intent", "loan_grade", "cb_person_default_on_file"]
|
16 |
+
X = pd.get_dummies(X, categorical_features)
|
17 |
+
X.columns
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
from sklearn.model_selection import train_test_split
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
|
23 |
+
|
24 |
+
|
25 |
+
from sklearn.preprocessing import StandardScaler
|
26 |
+
scaler_normal = StandardScaler()
|
27 |
+
def scaler(data, runtime = False):
|
28 |
+
normal_col = ['person_income','person_age','person_emp_length', 'loan_amnt','loan_int_rate','cb_person_cred_hist_length']
|
29 |
+
if(runtime == False):
|
30 |
+
data.loc[:,normal_col] = scaler_normal.fit_transform(data.loc[:,normal_col])
|
31 |
+
else:
|
32 |
+
data.loc[:,normal_col] = scaler_normal.transform(data.loc[:,normal_col])
|
33 |
+
return data
|
34 |
+
|
35 |
+
X_train = scaler(X_train)
|
36 |
+
X_test = scaler(X_test, True)
|
37 |
+
|
38 |
+
rf_model = RandomForestClassifier(max_depth = 5)
|
39 |
+
rf_model.fit(X_train, y_train)
|
40 |
+
|
41 |
+
y_predict = rf_model.predict(X_test)
|
42 |
+
y_predict
|
43 |
+
|
44 |
+
|
45 |
+
features = {
|
46 |
+
"person_home_ownership": ['MORTGAGE', 'OTHER','OWN', 'RENT',],
|
47 |
+
"loan_intent": ['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'],
|
48 |
+
"loan_grade": ['A','B', 'C', 'D', 'E','F', 'G'],
|
49 |
+
"cb_person_default_on_file": ['N', 'Y']
|
50 |
+
}
|
51 |
+
def preprocess(model_input):
|
52 |
+
for feature in features:
|
53 |
+
for option in features[feature]:
|
54 |
+
selection = model_input[feature]
|
55 |
+
if option is selection:
|
56 |
+
model_input[f'{feature}_{option}'] = 1
|
57 |
+
else:
|
58 |
+
model_input[f'{feature}_{option}'] = 0
|
59 |
+
|
60 |
+
model_input.drop([_ for _ in features], inplace = True, axis = 1)
|
61 |
+
return model_input
|
62 |
+
|
63 |
+
def credit_run(person_age, person_emp_length,person_home_ownership,cb_person_default_on_file,loan_intent,loan_grade,person_income, loan_amnt,
|
64 |
+
loan_int_rate, cb_person_cred_hist_length):
|
65 |
+
model_input = preprocess(
|
66 |
+
pd.DataFrame( { 'person_age': person_age,
|
67 |
+
'person_income': person_income,
|
68 |
+
'person_home_ownership': person_home_ownership,
|
69 |
+
'person_emp_length': person_emp_length,
|
70 |
+
'loan_intent': loan_intent,
|
71 |
+
'loan_grade': loan_grade,
|
72 |
+
'loan_amnt': loan_amnt,
|
73 |
+
'loan_int_rate': loan_int_rate,
|
74 |
+
'cb_person_default_on_file': cb_person_default_on_file,
|
75 |
+
'cb_person_cred_hist_length': cb_person_cred_hist_length
|
76 |
+
}, index = [0]
|
77 |
+
))
|
78 |
+
out = rf_model.predict(model_input)
|
79 |
+
return "High risk of defaulting" if out[0] == 1 else "Low risk of defaulting"
|
80 |
+
import gradio as gr
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column(scale=1,min_width=600):
|
84 |
+
gr.Image("non_payment_logo.jpg").style(height='7')
|
85 |
+
person_age=gr.Slider(label="Person Age(In Years)", minimum=18, maximum=90, step=1)
|
86 |
+
Pererson_Emp_Length=gr.Slider(label="Pererson Emp Length(In Years)", minimum=0, maximum=60, step=1)
|
87 |
+
|
88 |
+
with gr.Column(scale=2,min_width=600):
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column(scale=1,min_width=400):
|
91 |
+
Home_Ownership_Status=gr.Radio(['MORTGAGE', 'OTHER','OWN', 'RENT'],label="Home Ownership Status")
|
92 |
+
with gr.Column(scale=2,min_width=100):
|
93 |
+
Person_Defaulted_in_History=gr.Radio(['0', '1'],label="Person Defaulted in History")
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column(scale=3,min_width=300):
|
97 |
+
Credit_Intent=gr.Dropdown(['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'],label="Credit Intent")
|
98 |
+
with gr.Column(scale=4,min_width=300):
|
99 |
+
Type_Of_Credit=gr.Dropdown(['A','B', 'C', 'D', 'E','F', 'G'],label="Type Of Credit")
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column(scale=3,min_width=300):
|
102 |
+
Person_Income=gr.Number(label="Person Income(per month)")
|
103 |
+
with gr.Column(scale=4,min_width=300):
|
104 |
+
Loan_Amount=gr.Number(label="Loan Amount")
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column(scale=3,min_width=300):
|
107 |
+
Loan_Interest_Rate=gr.Number(label="Loan Interest Rate")
|
108 |
+
with gr.Column(scale=4,min_width=300):
|
109 |
+
Person_Credit_History_Length=gr.Number(label="Person's Credit History Length")
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
default= gr.Radio(['Low risk of defaulting', 'High risk of defaulting'])
|
113 |
+
|
114 |
+
btn = gr.Button("PREDICT")
|
115 |
+
btn.click(fn=credit_run, inputs=[person_age,Person_Income,Home_Ownership_Status,Pererson_Emp_Length,Credit_Intent,Type_Of_Credit,Loan_Amount,Loan_Interest_Rate,Person_Defaulted_in_History,Person_Credit_History_Length], outputs=[default])
|
116 |
+
#gr.Examples(inputs=[person_age,Pererson_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Loan_Amount,Loan_Interest_Rate,Person_Credit_History_Length])
|
117 |
+
demo.launch(debug=True)
|