|
import numpy as np |
|
import pandas as pd |
|
from sklearn.ensemble import RandomForestClassifier |
|
import gradio as gr |
|
|
|
df = pd.read_csv("credit_risk_dataset.csv") |
|
|
|
df = df.dropna() |
|
|
|
df.columns |
|
|
|
X =df.drop(["loan_status", "loan_percent_income"], axis = 1) |
|
y = df['loan_status'] |
|
|
|
categorical_features = ["person_home_ownership", "loan_intent", "loan_grade", "cb_person_default_on_file"] |
|
X = pd.get_dummies(X, categorical_features) |
|
X.columns |
|
|
|
|
|
|
|
from sklearn.model_selection import train_test_split |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) |
|
|
|
|
|
from sklearn.preprocessing import StandardScaler |
|
scaler_normal = StandardScaler() |
|
def scaler(data, runtime = False): |
|
normal_col = ['person_income','person_age','person_emp_length', 'loan_amnt','loan_int_rate','cb_person_cred_hist_length'] |
|
if(runtime == False): |
|
data.loc[:,normal_col] = scaler_normal.fit_transform(data.loc[:,normal_col]) |
|
else: |
|
data.loc[:,normal_col] = scaler_normal.transform(data.loc[:,normal_col]) |
|
return data |
|
|
|
X_train = scaler(X_train) |
|
X_test = scaler(X_test, True) |
|
|
|
rf_model = RandomForestClassifier(max_depth = 5) |
|
rf_model.fit(X_train, y_train) |
|
|
|
y_predict = rf_model.predict(X_test) |
|
y_predict |
|
|
|
|
|
features = { |
|
"person_home_ownership": ['MORTGAGE', 'OTHER','OWN', 'RENT',], |
|
"loan_intent": ['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'], |
|
"loan_grade": ['A','B', 'C', 'D', 'E','F', 'G'], |
|
"cb_person_default_on_file": ['N', 'Y'] |
|
} |
|
def preprocess(model_input): |
|
for feature in features: |
|
for option in features[feature]: |
|
selection = model_input[feature] |
|
if option is selection: |
|
model_input[f'{feature}_{option}'] = 1 |
|
else: |
|
model_input[f'{feature}_{option}'] = 0 |
|
|
|
model_input.drop([_ for _ in features], inplace = True, axis = 1) |
|
return model_input |
|
|
|
|
|
def credit_run(person_age, person_emp_length,person_home_ownership,cb_person_default_on_file,loan_intent,loan_grade,person_income, loan_amnt, |
|
loan_int_rate, cb_person_cred_hist_length): |
|
model_input = preprocess( |
|
pd.DataFrame( { 'person_age': person_age, |
|
'person_income': person_income, |
|
'person_home_ownership': person_home_ownership, |
|
'person_emp_length': person_emp_length, |
|
'loan_intent': loan_intent, |
|
'loan_grade': loan_grade, |
|
'loan_amnt': loan_amnt, |
|
'loan_int_rate': loan_int_rate, |
|
'cb_person_default_on_file': cb_person_default_on_file, |
|
'cb_person_cred_hist_length': cb_person_cred_hist_length |
|
}, index = [0] |
|
)) |
|
out = rf_model.predict(model_input) |
|
return "High risk of defaulting" if out[0] == 1 else "Low risk of defaulting" |
|
|
|
import gradio as gr |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1,min_width=400): |
|
gr.Image("Non_Payment_Logo.png").style(height='5') |
|
with gr.Column(scale=1,min_width=600): |
|
person_age=gr.Slider(label="Customer Age(In Years)", minimum=18, maximum=90, step=1) |
|
Person_Emp_Length=gr.Slider(label="Customer Employement Length(In Years)", minimum=0, maximum=60, step=1) |
|
|
|
with gr.Column(scale=2,min_width=600): |
|
with gr.Row(): |
|
with gr.Column(scale=1,min_width=500): |
|
Home_Ownership_Status=gr.Radio(['MORTGAGE', 'OTHER','OWN', 'RENT'],label="Home Ownership Status") |
|
with gr.Column(scale=2,min_width=100): |
|
Person_Defaulted_in_History=gr.Radio(['0', '1'],label="Missed Payment in History") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3,min_width=300): |
|
Credit_Intent=gr.Dropdown(['DEBTCONSOLIDATION', 'EDUCATION', 'HOMEIMPROVEMENT', 'MEDICAL', 'PERSONAL', 'VENTURE'],label="Intent") |
|
with gr.Column(scale=4,min_width=300): |
|
Type_Of_Credit=gr.Dropdown(['A','B', 'C', 'D', 'E','F', 'G'],label="Type Of Credit") |
|
with gr.Row(): |
|
with gr.Column(scale=3,min_width=300): |
|
Person_Income=gr.Number(label="Customer Income(per month)") |
|
with gr.Column(scale=4,min_width=300): |
|
Credit_Amount=gr.Number(label="Premium Amount") |
|
with gr.Row(): |
|
with gr.Column(scale=3,min_width=300): |
|
Interest_Rate=gr.Number(label="Interest Rate") |
|
with gr.Column(scale=4,min_width=300): |
|
Person_Credit_History_Length=gr.Number(label="Customer's Credit History Length") |
|
with gr.Row(): |
|
with gr.Column(): |
|
default= gr.Radio(['Low risk of defaulting', 'High risk of defaulting'],label="Chances Of Defaulting") |
|
|
|
btn = gr.Button("PREDICT") |
|
btn.click(fn=credit_run, inputs=[person_age,Person_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Credit_Amount,Interest_Rate,Person_Credit_History_Length], outputs=[default]) |
|
gr.Examples( |
|
[["23","2","RENT","N","EDUCATION","A","12000","30000","8.9","6"], |
|
["35","10","OWN","N","MEDICAL","C","20000","40000","8.3","8"], |
|
["28","6","RENT","N","VENTURE","B","32000","30000","8.2","6"], |
|
["32","10","MORTGAGE","Y","HOMEIMPROVEMENT","E","20000","600000","8.6","8"], |
|
["41","18","OWN","Y","PERSONAL","A","10000","300000","14.3","4"], |
|
["30","7","OTHER","Y","MEDICAL","C","13000","1000000","9.5","10"]], |
|
|
|
inputs=[person_age,Person_Emp_Length,Home_Ownership_Status,Person_Defaulted_in_History,Credit_Intent,Type_Of_Credit,Person_Income,Credit_Amount,Interest_Rate,Person_Credit_History_Length] |
|
) |
|
demo.launch(debug=True) |