Spaces:
Build error
Build error
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
4 |
+
from langchain.chains.summarize import load_summarize_chain
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
+
from transformers import pipeline
|
7 |
+
import torch
|
8 |
+
import base64
|
9 |
+
|
10 |
+
#model and tokenizer loading
|
11 |
+
checkpoint = "LaMini-Flan-T5-248M"
|
12 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
13 |
+
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32)
|
14 |
+
|
15 |
+
#file loader and preprocessing
|
16 |
+
def file_preprocessing(file):
|
17 |
+
loader = PyPDFLoader(file)
|
18 |
+
pages = loader.load_and_split()
|
19 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
|
20 |
+
texts = text_splitter.split_documents(pages)
|
21 |
+
final_texts = ""
|
22 |
+
for text in texts:
|
23 |
+
print(text)
|
24 |
+
final_texts = final_texts + text.page_content
|
25 |
+
return final_texts
|
26 |
+
|
27 |
+
#LLM pipeline
|
28 |
+
def llm_pipeline(filepath):
|
29 |
+
pipe_sum = pipeline(
|
30 |
+
'summarization',
|
31 |
+
model = base_model,
|
32 |
+
tokenizer = tokenizer,
|
33 |
+
max_length = 500,
|
34 |
+
min_length = 50)
|
35 |
+
input_text = file_preprocessing(filepath)
|
36 |
+
result = pipe_sum(input_text)
|
37 |
+
result = result[0]['summary_text']
|
38 |
+
return result
|
39 |
+
|
40 |
+
@st.cache_data
|
41 |
+
#function to display the PDF of a given file
|
42 |
+
def displayPDF(file):
|
43 |
+
# Opening file from file path
|
44 |
+
with open(file, "rb") as f:
|
45 |
+
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
46 |
+
|
47 |
+
# Embedding PDF in HTML
|
48 |
+
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
49 |
+
|
50 |
+
# Displaying File
|
51 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
52 |
+
|
53 |
+
#streamlit code
|
54 |
+
st.set_page_config(layout="wide")
|
55 |
+
|
56 |
+
def main():
|
57 |
+
st.title("Document Summarization App using Langauge Model")
|
58 |
+
|
59 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
|
60 |
+
|
61 |
+
if uploaded_file is not None:
|
62 |
+
if st.button("Summarize"):
|
63 |
+
col1, col2 = st.columns(2)
|
64 |
+
filepath = "uploaded_file.name"
|
65 |
+
with open(filepath, "wb") as temp_file:
|
66 |
+
temp_file.write(uploaded_file.read())
|
67 |
+
with col1:
|
68 |
+
st.info("Uploaded File")
|
69 |
+
pdf_view = displayPDF(filepath)
|
70 |
+
|
71 |
+
with col2:
|
72 |
+
summary = llm_pipeline(filepath)
|
73 |
+
st.info("Summarization Complete")
|
74 |
+
st.success(summary)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
main()
|