auto-ml-gradio / app.py
harikrishnad1997's picture
Create app.py
21bd1c0 verified
raw
history blame
1.45 kB
import gradio as gr
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the Iris dataset
iris_df = sns.load_dataset('iris')
# Function to plot histogram
def plot_histogram(csv_file, column):
# Read the CSV file
custom_df = pd.read_csv(csv_file)
# Plot histogram
plt.figure(figsize=(8, 6))
sns.histplot(custom_df[column])
plt.title(f'Histogram for {column}')
plt.xlabel(column)
plt.ylabel('Frequency')
return plt
# Function to plot scatter plot
def plot_scatter(csv_file, x_axis, y_axis):
# Read the CSV file
custom_df = pd.read_csv(csv_file)
# Plot scatter plot
plt.figure(figsize=(8, 6))
sns.scatterplot(x=x_axis, y=y_axis, data=custom_df)
plt.title(f'Scatter Plot ({x_axis} vs {y_axis})')
plt.xlabel(x_axis)
plt.ylabel(y_axis)
return plt
# Create the Gradio interface
iface = gr.Interface(
fn=plot_histogram,
inputs=["csv", "text"],
outputs="plot",
title="Histogram Plotter",
description="Upload a CSV file and select a column to plot its histogram."
)
# Add a second interface for scatter plot
scatter_iface = gr.Interface(
fn=plot_scatter,
inputs=["csv", "text", "text"],
outputs="plot",
title="Scatter Plotter",
description="Upload a CSV file and select X and Y columns to plot a scatter plot."
)
# Launch the Gradio interfaces
iface.launch(share=True)
scatter_iface.launch(share=True)