haotiz's picture
initial commit
708dec4
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Utilities related to distributed mode.
By default, the reduce of metrics and such are done on GPU, since it's more straightforward (we reuse the NCCL backend)
If you want to reduce on CPU instead (required for big datasets like GQA), use the env variable MDETR_CPU_REDUCE=1
"""
import functools
import io
import os
import datetime
import torch
import torch.distributed as dist
_LOCAL_PROCESS_GROUP = None
@functools.lru_cache()
def _get_global_gloo_group():
"""
Return a process group based on gloo backend, containing all the ranks
The result is cached.
"""
if dist.get_backend() == "nccl":
return dist.new_group(backend="gloo")
return dist.group.WORLD
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
cpu_group = None
if os.getenv("MDETR_CPU_REDUCE") == "1":
cpu_group = _get_global_gloo_group()
buffer = io.BytesIO()
torch.save(data, buffer)
data_view = buffer.getbuffer()
device = "cuda" if cpu_group is None else "cpu"
tensor = torch.ByteTensor(data_view).to(device)
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
if cpu_group is None:
dist.all_gather(size_list, local_size)
else:
print("gathering on cpu")
dist.all_gather(size_list, local_size, group=cpu_group)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
assert isinstance(local_size.item(), int)
local_size = int(local_size.item())
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
tensor = torch.cat((tensor, padding), dim=0)
if cpu_group is None:
dist.all_gather(tensor_list, tensor)
else:
dist.all_gather(tensor_list, tensor, group=cpu_group)
data_list = []
for size, tensor in zip(size_list, tensor_list):
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
buffer = io.BytesIO(tensor.cpu().numpy())
obj = torch.load(buffer)
data_list.append(obj)
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
"""
Returns:
True if distributed training is enabled
"""
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
"""
Returns:
The number of processes in the process group
"""
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
"""
Returns:
The rank of the current process within the global process group.
"""
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_local_rank() -> int:
"""
Returns:
The rank of the current process within the local (per-machine) process group.
"""
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
assert _LOCAL_PROCESS_GROUP is not None
return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
def get_local_size() -> int:
"""
Returns:
The size of the per-machine process group,
i.e. the number of processes per machine.
"""
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
def is_main_process():
"""Return true if the current process is the main one"""
return get_rank() == 0
def save_on_master(*args, **kwargs):
"""Utility function to save only from the main process"""
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
"""Initialize distributed training, if appropriate"""
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank,
timeout=datetime.timedelta(0, 7200)
)
dist.barrier()
setup_for_distributed(args.debug or args.rank == 0)