haotiz's picture
initial commit
708dec4
raw
history blame
7.28 kB
import torch
from torch.nn import functional as F
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.modeling.balanced_positive_negative_sampler import (
BalancedPositiveNegativeSampler,
)
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.structures.keypoint import keypoints_to_heat_map
def project_keypoints_to_heatmap(keypoints, proposals, discretization_size):
proposals = proposals.convert("xyxy")
return keypoints_to_heat_map(
keypoints.keypoints, proposals.bbox, discretization_size
)
def cat_boxlist_with_keypoints(boxlists):
assert all(boxlist.has_field("keypoints") for boxlist in boxlists)
kp = [boxlist.get_field("keypoints").keypoints for boxlist in boxlists]
kp = cat(kp, 0)
fields = boxlists[0].get_fields()
fields = [field for field in fields if field != "keypoints"]
boxlists = [boxlist.copy_with_fields(fields) for boxlist in boxlists]
boxlists = cat_boxlist(boxlists)
boxlists.add_field("keypoints", kp)
return boxlists
def _within_box(points, boxes):
"""Validate which keypoints are contained inside a given box.
points: NxKx2
boxes: Nx4
output: NxK
"""
x_within = (points[..., 0] >= boxes[:, 0, None]) & (
points[..., 0] <= boxes[:, 2, None]
)
y_within = (points[..., 1] >= boxes[:, 1, None]) & (
points[..., 1] <= boxes[:, 3, None]
)
return x_within & y_within
class KeypointRCNNLossComputation(object):
def __init__(self, proposal_matcher, fg_bg_sampler, discretization_size):
"""
Arguments:
proposal_matcher (Matcher)
fg_bg_sampler (BalancedPositiveNegativeSampler)
discretization_size (int)
"""
self.proposal_matcher = proposal_matcher
self.fg_bg_sampler = fg_bg_sampler
self.discretization_size = discretization_size
def match_targets_to_proposals(self, proposal, target):
match_quality_matrix = boxlist_iou(target, proposal)
matched_idxs = self.proposal_matcher(match_quality_matrix)
# Keypoint RCNN needs "labels" and "keypoints "fields for creating the targets
target = target.copy_with_fields(["labels", "keypoints"])
# get the targets corresponding GT for each proposal
# NB: need to clamp the indices because we can have a single
# GT in the image, and matched_idxs can be -2, which goes
# out of bounds
matched_targets = target[matched_idxs.clamp(min=0)]
matched_targets.add_field("matched_idxs", matched_idxs)
return matched_targets
def prepare_targets(self, proposals, targets):
labels = []
keypoints = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
matched_targets = self.match_targets_to_proposals(
proposals_per_image, targets_per_image
)
matched_idxs = matched_targets.get_field("matched_idxs")
labels_per_image = matched_targets.get_field("labels")
labels_per_image = labels_per_image.to(dtype=torch.int64)
# this can probably be removed, but is left here for clarity
# and completeness
# TODO check if this is the right one, as BELOW_THRESHOLD
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
labels_per_image[neg_inds] = 0
keypoints_per_image = matched_targets.get_field("keypoints")
within_box = _within_box(
keypoints_per_image.keypoints, matched_targets.bbox
)
vis_kp = keypoints_per_image.keypoints[..., 2] > 0
is_visible = (within_box & vis_kp).sum(1) > 0
labels_per_image[~is_visible] = -1
labels.append(labels_per_image)
keypoints.append(keypoints_per_image)
return labels, keypoints
def subsample(self, proposals, targets):
"""
This method performs the positive/negative sampling, and return
the sampled proposals.
Note: this function keeps a state.
Arguments:
proposals (list[BoxList])
targets (list[BoxList])
"""
labels, keypoints = self.prepare_targets(proposals, targets)
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
proposals = list(proposals)
# add corresponding label and regression_targets information to the bounding boxes
for labels_per_image, keypoints_per_image, proposals_per_image in zip(
labels, keypoints, proposals
):
proposals_per_image.add_field("labels", labels_per_image)
proposals_per_image.add_field("keypoints", keypoints_per_image)
# distributed sampled proposals, that were obtained on all feature maps
# concatenated via the fg_bg_sampler, into individual feature map levels
for img_idx, (pos_inds_img, neg_inds_img) in enumerate(
zip(sampled_pos_inds, sampled_neg_inds)
):
img_sampled_inds = torch.nonzero(pos_inds_img).squeeze(1)
proposals_per_image = proposals[img_idx][img_sampled_inds]
proposals[img_idx] = proposals_per_image
self._proposals = proposals
return proposals
def __call__(self, proposals, keypoint_logits):
heatmaps = []
valid = []
for proposals_per_image in proposals:
kp = proposals_per_image.get_field("keypoints")
heatmaps_per_image, valid_per_image = project_keypoints_to_heatmap(
kp, proposals_per_image, self.discretization_size
)
heatmaps.append(heatmaps_per_image.view(-1))
valid.append(valid_per_image.view(-1))
keypoint_targets = cat(heatmaps, dim=0)
valid = cat(valid, dim=0).to(dtype=torch.bool)
valid = torch.nonzero(valid).squeeze(1)
# torch.mean (in binary_cross_entropy_with_logits) does'nt
# accept empty tensors, so handle it sepaartely
if keypoint_targets.numel() == 0 or len(valid) == 0:
return keypoint_logits.sum() * 0
N, K, H, W = keypoint_logits.shape
keypoint_logits = keypoint_logits.view(N * K, H * W)
keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
return keypoint_loss
def make_roi_keypoint_loss_evaluator(cfg):
matcher = Matcher(
cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
allow_low_quality_matches=False,
)
fg_bg_sampler = BalancedPositiveNegativeSampler(
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
)
resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.RESOLUTION
loss_evaluator = KeypointRCNNLossComputation(matcher, fg_bg_sampler, resolution)
return loss_evaluator