Spaces:
Build error
Build error
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
template <typename scalar_t> | |
std::pair<at::Tensor, at::Tensor> soft_nms_cpu_kernel(const at::Tensor& dets, | |
const at::Tensor& scores, | |
const float threshold, | |
const float sigma) { | |
AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor"); | |
AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor"); | |
AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores"); | |
if (dets.numel() == 0) { | |
return std::make_pair(at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU)), | |
at::empty({0}, scores.options().dtype(at::kFloat).device(at::kCPU))); | |
} | |
auto x1_t = dets.select(1, 0).contiguous(); | |
auto y1_t = dets.select(1, 1).contiguous(); | |
auto x2_t = dets.select(1, 2).contiguous(); | |
auto y2_t = dets.select(1, 3).contiguous(); | |
auto scores_t = scores.clone(); | |
at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1); | |
auto ndets = dets.size(0); | |
auto inds_t = at::arange(ndets, dets.options().dtype(at::kLong).device(at::kCPU)); | |
auto x1 = x1_t.data_ptr<scalar_t>(); | |
auto y1 = y1_t.data_ptr<scalar_t>(); | |
auto x2 = x2_t.data_ptr<scalar_t>(); | |
auto y2 = y2_t.data_ptr<scalar_t>(); | |
auto s = scores_t.data_ptr<scalar_t>(); | |
auto inds = inds_t.data_ptr<int64_t>(); | |
auto areas = areas_t.data_ptr<scalar_t>(); | |
for (int64_t i = 0; i < ndets; i++) { | |
auto ix1 = x1[i]; | |
auto iy1 = y1[i]; | |
auto ix2 = x2[i]; | |
auto iy2 = y2[i]; | |
auto is = s[i]; | |
auto ii = inds[i]; | |
auto iarea = areas[i]; | |
auto maxpos = scores_t.slice(0, i, ndets).argmax().item<int64_t>() + i; | |
// add max box as a detection | |
x1[i] = x1[maxpos]; | |
y1[i] = y1[maxpos]; | |
x2[i] = x2[maxpos]; | |
y2[i] = y2[maxpos]; | |
s[i] = s[maxpos]; | |
inds[i] = inds[maxpos]; | |
areas[i] = areas[maxpos]; | |
// swap ith box with position of max box | |
x1[maxpos] = ix1; | |
y1[maxpos] = iy1; | |
x2[maxpos] = ix2; | |
y2[maxpos] = iy2; | |
s[maxpos] = is; | |
inds[maxpos] = ii; | |
areas[maxpos] = iarea; | |
ix1 = x1[i]; | |
iy1 = y1[i]; | |
ix2 = x2[i]; | |
iy2 = y2[i]; | |
iarea = areas[i]; | |
// NMS iterations, note that ndets changes if detection boxes | |
// fall below threshold | |
for (int64_t j = i + 1; j < ndets; j++) { | |
auto xx1 = std::max(ix1, x1[j]); | |
auto yy1 = std::max(iy1, y1[j]); | |
auto xx2 = std::min(ix2, x2[j]); | |
auto yy2 = std::min(iy2, y2[j]); | |
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1); | |
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1); | |
auto inter = w * h; | |
auto ovr = inter / (iarea + areas[j] - inter); | |
s[j] = s[j] * std::exp(- std::pow(ovr, 2.0) / sigma); | |
// if box score falls below threshold, discard the box by | |
// swapping with last box update ndets | |
if (s[j] < threshold) { | |
x1[j] = x1[ndets - 1]; | |
y1[j] = y1[ndets - 1]; | |
x2[j] = x2[ndets - 1]; | |
y2[j] = y2[ndets - 1]; | |
s[j] = s[ndets - 1]; | |
inds[j] = inds[ndets - 1]; | |
areas[j] = areas[ndets - 1]; | |
j--; | |
ndets--; | |
} | |
} | |
} | |
return std::make_pair(inds_t.slice(0, 0, ndets), scores_t.slice(0, 0, ndets)); | |
} | |
std::pair<at::Tensor, at::Tensor> soft_nms_cpu(const at::Tensor& dets, | |
const at::Tensor& scores, | |
const float threshold, | |
const float sigma) { | |
std::pair<at::Tensor, at::Tensor> result; | |
AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "soft_nms", [&] { | |
result = soft_nms_cpu_kernel<scalar_t>(dets, scores, threshold, sigma); | |
}); | |
return result; | |
} |