|
import io |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import soundfile |
|
|
|
from infer_tools import infer_tool |
|
from infer_tools import slicer |
|
from infer_tools.infer_tool import Svc |
|
from utils.hparams import hparams |
|
|
|
|
|
def run_clip(raw_audio_path, svc_model, key, acc, use_crepe, spk_id=0, auto_key=False, out_path=None, slice_db=-40, |
|
**kwargs): |
|
print(f'code version:2023-01-22') |
|
|
|
clean_name = Path(raw_audio_path).name.split(".")[0] |
|
infer_tool.format_wav(raw_audio_path) |
|
wav_path = Path(raw_audio_path).with_suffix('.wav') |
|
key = svc_model.evaluate_key(wav_path, key, auto_key) |
|
chunks = slicer.cut(wav_path, db_thresh=slice_db) |
|
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) |
|
|
|
count = 0 |
|
f0_tst, f0_pred, audio = [], [], [] |
|
for (slice_tag, data) in audio_data: |
|
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') |
|
length = int(np.ceil(len(data) / audio_sr * hparams['audio_sample_rate'])) |
|
raw_path = io.BytesIO() |
|
soundfile.write(raw_path, data, audio_sr, format="wav") |
|
raw_path.seek(0) |
|
if slice_tag: |
|
print('jump empty segment') |
|
_f0_tst, _f0_pred, _audio = ( |
|
np.zeros(int(np.ceil(length / hparams['hop_size']))), |
|
np.zeros(int(np.ceil(length / hparams['hop_size']))), |
|
np.zeros(length)) |
|
else: |
|
_f0_tst, _f0_pred, _audio = svc_model.infer(raw_path, spk_id=spk_id, key=key, acc=acc, use_crepe=use_crepe) |
|
fix_audio = np.zeros(length) |
|
fix_audio[:] = np.mean(_audio) |
|
fix_audio[:len(_audio)] = _audio[0 if len(_audio) < len(fix_audio) else len(_audio) - len(fix_audio):] |
|
f0_tst.extend(_f0_tst) |
|
f0_pred.extend(_f0_pred) |
|
audio.extend(list(fix_audio)) |
|
count += 1 |
|
if out_path is None: |
|
out_path = f'./results/{clean_name}_{key}key_{project_name}_{hparams["residual_channels"]}_{hparams["residual_layers"]}_{int(step / 1000)}k_{accelerate}x.{kwargs["format"]}' |
|
soundfile.write(out_path, audio, hparams["audio_sample_rate"], 'PCM_16', format=out_path.split('.')[-1]) |
|
return np.array(f0_tst), np.array(f0_pred), audio |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
project_name = "open-aqua" |
|
model_path = f'./checkpoints/{project_name}/model_ckpt_steps_90000.ckpt' |
|
config_path = f'./checkpoints/{project_name}/config.yaml' |
|
|
|
|
|
file_names = ["横竖撇点折-main-2key.wav"] |
|
spk_id = "single" |
|
|
|
auto_key = False |
|
trans = [0] |
|
|
|
accelerate = 1 |
|
hubert_gpu = True |
|
wav_format = 'wav' |
|
step = int(model_path.split("_")[-1].split(".")[0]) |
|
|
|
|
|
infer_tool.mkdir(["./raw", "./results"]) |
|
infer_tool.fill_a_to_b(trans, file_names) |
|
|
|
model = Svc(project_name, config_path, hubert_gpu, model_path, onnx=False) |
|
for f_name, tran in zip(file_names, trans): |
|
if "." not in f_name: |
|
f_name += ".wav" |
|
audio_path = f"./raw/{f_name}" |
|
run_clip(raw_audio_path=audio_path, svc_model=model, key=tran, acc=accelerate, use_crepe=False, |
|
spk_id=spk_id, auto_key=auto_key, project_name=project_name, format=wav_format) |
|
|