|
import gradio as gr |
|
import torch |
|
from diffusers import AudioLDM2Pipeline |
|
|
|
import ast |
|
import copy |
|
import csv |
|
import inspect |
|
import os |
|
import shutil |
|
import subprocess |
|
import tempfile |
|
import warnings |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, Sequence |
|
|
|
import numpy as np |
|
import PIL |
|
import PIL.Image |
|
from gradio_client import utils as client_utils |
|
from gradio_client.documentation import document |
|
|
|
from gradio import components, oauth, processing_utils, routes, utils, wasm_utils |
|
from gradio.context import Context, LocalContext, get_blocks_context |
|
from gradio.data_classes import GradioModel, GradioRootModel |
|
from gradio.events import Dependency, EventData |
|
from gradio.exceptions import Error |
|
from gradio.flagging import CSVLogger |
|
from gradio.utils import UnhashableKeyDict |
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
torch_dtype = torch.float16 |
|
else: |
|
device = "cpu" |
|
torch_dtype = torch.float32 |
|
|
|
|
|
repo_id = "cvssp/audioldm2" |
|
pipe = AudioLDM2Pipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) |
|
|
|
|
|
|
|
generator = torch.Generator(device) |
|
|
|
@document() |
|
def make_waveform( |
|
audio: str | tuple[int, np.ndarray], |
|
*, |
|
bg_color: str = "#f3f4f6", |
|
bg_image: str | None = None, |
|
fg_alpha: float = 0.75, |
|
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"), |
|
bar_count: int = 50, |
|
bar_width: float = 0.6, |
|
animate: bool = False, |
|
) -> str: |
|
""" |
|
Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component. |
|
Parameters: |
|
audio: Audio file path or tuple of (sample_rate, audio_data) |
|
bg_color: Background color of waveform (ignored if bg_image is provided) |
|
bg_image: Background image of waveform |
|
fg_alpha: Opacity of foreground waveform |
|
bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient |
|
bar_count: Number of bars in waveform |
|
bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc. |
|
animate: If true, the audio waveform overlay will be animated, if false, it will be static. |
|
Returns: |
|
A filepath to the output video in mp4 format. |
|
""" |
|
import matplotlib.pyplot as plt |
|
from matplotlib.animation import FuncAnimation |
|
|
|
if isinstance(audio, str): |
|
audio_file = audio |
|
audio = processing_utils.audio_from_file(audio) |
|
else: |
|
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) |
|
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav") |
|
audio_file = tmp_wav.name |
|
|
|
if not os.path.isfile(audio_file): |
|
raise ValueError("Audio file not found.") |
|
|
|
ffmpeg = shutil.which("ffmpeg") |
|
if not ffmpeg: |
|
raise RuntimeError("ffmpeg not found.") |
|
|
|
duration = round(len(audio[1]) / audio[0], 4) |
|
|
|
|
|
def hex_to_rgb(hex_str): |
|
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] |
|
|
|
def get_color_gradient(c1, c2, n): |
|
if n < 1: |
|
raise ValueError("Must have at least one stop in gradient") |
|
c1_rgb = np.array(hex_to_rgb(c1)) / 255 |
|
c2_rgb = np.array(hex_to_rgb(c2)) / 255 |
|
mix_pcts = [x / (n - 1) for x in range(n)] |
|
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] |
|
return [ |
|
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item) |
|
for item in rgb_colors |
|
] |
|
|
|
|
|
samples = audio[1] |
|
if len(samples.shape) > 1: |
|
samples = np.mean(samples, 1) |
|
bins_to_pad = bar_count - (len(samples) % bar_count) |
|
samples = np.pad(samples, [(0, bins_to_pad)]) |
|
samples = np.reshape(samples, (bar_count, -1)) |
|
samples = np.abs(samples) |
|
samples = np.max(samples, 1) |
|
|
|
with utils.MatplotlibBackendMananger(): |
|
plt.clf() |
|
|
|
color = ( |
|
bars_color |
|
if isinstance(bars_color, str) |
|
else get_color_gradient(bars_color[0], bars_color[1], bar_count) |
|
) |
|
|
|
if animate: |
|
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False) |
|
fig.subplots_adjust(left=0, bottom=0, right=1, top=1) |
|
plt.axis("off") |
|
plt.margins(x=0) |
|
|
|
bar_alpha = fg_alpha if animate else 1.0 |
|
barcollection = plt.bar( |
|
np.arange(0, bar_count), |
|
samples * 2, |
|
bottom=(-1 * samples), |
|
width=bar_width, |
|
color=color, |
|
alpha=bar_alpha, |
|
) |
|
|
|
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) |
|
|
|
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"} |
|
if bg_image is not None: |
|
savefig_kwargs["transparent"] = True |
|
if animate: |
|
savefig_kwargs["facecolor"] = "none" |
|
else: |
|
savefig_kwargs["facecolor"] = bg_color |
|
plt.savefig(tmp_img.name, **savefig_kwargs) |
|
|
|
if not animate: |
|
waveform_img = PIL.Image.open(tmp_img.name) |
|
waveform_img = waveform_img.resize((1000, 400)) |
|
|
|
|
|
if bg_image is not None: |
|
waveform_array = np.array(waveform_img) |
|
waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha |
|
waveform_img = PIL.Image.fromarray(waveform_array) |
|
|
|
bg_img = PIL.Image.open(bg_image) |
|
waveform_width, waveform_height = waveform_img.size |
|
bg_width, bg_height = bg_img.size |
|
if waveform_width != bg_width: |
|
bg_img = bg_img.resize( |
|
( |
|
waveform_width, |
|
2 * int(bg_height * waveform_width / bg_width / 2), |
|
) |
|
) |
|
bg_width, bg_height = bg_img.size |
|
composite_height = max(bg_height, waveform_height) |
|
composite = PIL.Image.new( |
|
"RGBA", (waveform_width, composite_height), "#FFFFFF" |
|
) |
|
composite.paste(bg_img, (0, composite_height - bg_height)) |
|
composite.paste( |
|
waveform_img, (0, composite_height - waveform_height), waveform_img |
|
) |
|
composite.save(tmp_img.name) |
|
img_width, img_height = composite.size |
|
else: |
|
img_width, img_height = waveform_img.size |
|
waveform_img.save(tmp_img.name) |
|
else: |
|
|
|
def _animate(_): |
|
for idx, b in enumerate(barcollection): |
|
rand_height = np.random.uniform(0.8, 1.2) |
|
b.set_height(samples[idx] * rand_height * 2) |
|
b.set_y((-rand_height * samples)[idx]) |
|
|
|
frames = int(duration * 10) |
|
anim = FuncAnimation( |
|
fig, |
|
_animate, |
|
repeat=False, |
|
blit=False, |
|
frames=frames, |
|
interval=100, |
|
) |
|
anim.save( |
|
tmp_img.name, |
|
writer="pillow", |
|
fps=10, |
|
codec="png", |
|
savefig_kwargs=savefig_kwargs, |
|
) |
|
|
|
|
|
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) |
|
|
|
if animate and bg_image is not None: |
|
ffmpeg_cmd = [ |
|
ffmpeg, |
|
"-loop", |
|
"1", |
|
"-i", |
|
bg_image, |
|
"-i", |
|
tmp_img.name, |
|
"-i", |
|
audio_file, |
|
"-filter_complex", |
|
"[0:v]scale=w=trunc(iw/2)*2:h=trunc(ih/2)*2[bg];[1:v]format=rgba,colorchannelmixer=aa=1.0[ov];[bg][ov]overlay=(main_w-overlay_w*0.9)/2:main_h-overlay_h*0.9/2[output]", |
|
"-t", |
|
str(duration), |
|
"-map", |
|
"[output]", |
|
"-map", |
|
"2:a", |
|
"-c:v", |
|
"libx264", |
|
"-c:a", |
|
"aac", |
|
"-shortest", |
|
"-y", |
|
output_mp4.name, |
|
] |
|
elif animate and bg_image is None: |
|
ffmpeg_cmd = [ |
|
ffmpeg, |
|
"-i", |
|
tmp_img.name, |
|
"-i", |
|
audio_file, |
|
"-filter_complex", |
|
"[0:v][1:a]concat=n=1:v=1:a=1[v];[v]scale=1000:400,format=yuv420p[v_scaled]", |
|
"-map", |
|
"[v_scaled]", |
|
"-map", |
|
"1:a", |
|
"-c:v", |
|
"libx264", |
|
"-c:a", |
|
"aac", |
|
"-shortest", |
|
"-y", |
|
output_mp4.name, |
|
] |
|
else: |
|
ffmpeg_cmd = [ |
|
ffmpeg, |
|
"-loop", |
|
"1", |
|
"-i", |
|
tmp_img.name, |
|
"-i", |
|
audio_file, |
|
"-vf", |
|
f"color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", |
|
"-t", |
|
str(duration), |
|
"-y", |
|
output_mp4.name, |
|
] |
|
|
|
subprocess.check_call(ffmpeg_cmd) |
|
return output_mp4.name |
|
|
|
|
|
def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates): |
|
if text is None: |
|
raise gr.Error("Please provide a text input.") |
|
|
|
waveforms = pipe( |
|
text, |
|
audio_length_in_s=duration, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=200, |
|
negative_prompt=negative_prompt, |
|
num_waveforms_per_prompt=n_candidates if n_candidates else 1, |
|
generator=generator.manual_seed(int(random_seed)), |
|
)["audios"] |
|
|
|
return make_waveform((16000, waveforms[0]), bg_image="bg.png") |
|
|
|
|
|
|
|
iface = gr.Blocks() |
|
|
|
with iface: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> |
|
AudioLDM 2: A General Framework for Audio, Music, and Speech Generation |
|
</h1> |
|
</div> <p style="margin-bottom: 10px; font-size: 94%"> |
|
<a href="https://arxiv.org/abs/2308.05734">[Paper]</a> <a href="https://audioldm.github.io/audioldm2">[Project |
|
page]</a> <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2">[🧨 |
|
Diffusers]</a> |
|
</p> |
|
</div> |
|
""" |
|
) |
|
gr.HTML("""This is the demo for AudioLDM 2, powered by 🧨 Diffusers. Demo uses the checkpoint <a |
|
href="https://huggingface.co/cvssp/audioldm2"> AudioLDM 2 base</a>. For faster inference without waiting in |
|
queue, you may duplicate the space and upgrade to a GPU in the settings.""") |
|
gr.DuplicateButton() |
|
|
|
with gr.Group(): |
|
textbox = gr.Textbox( |
|
value="The vibrant beat of Brazilian samba drums.", |
|
max_lines=1, |
|
label="Input text", |
|
info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", |
|
elem_id="prompt-in", |
|
) |
|
negative_textbox = gr.Textbox( |
|
value="Low quality.", |
|
max_lines=1, |
|
label="Negative prompt", |
|
info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.", |
|
elem_id="prompt-in", |
|
) |
|
|
|
with gr.Accordion("Click to modify detailed configurations", open=False): |
|
seed = gr.Number( |
|
value=45, |
|
label="Seed", |
|
info="Change this value (any integer number) will lead to a different generation result.", |
|
) |
|
duration = gr.Slider(5, 15, value=10, step=2.5, label="Duration (seconds)") |
|
guidance_scale = gr.Slider( |
|
0, |
|
7, |
|
value=3.5, |
|
step=0.5, |
|
label="Guidance scale", |
|
info="Larger => better quality and relevancy to text; Smaller => better diversity", |
|
) |
|
n_candidates = gr.Slider( |
|
1, |
|
5, |
|
value=3, |
|
step=1, |
|
label="Number waveforms to generate", |
|
info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A larger value usually lead to better quality with heavier computation", |
|
) |
|
|
|
outputs = gr.Video(label="Output", elem_id="output-video") |
|
btn = gr.Button("Submit") |
|
|
|
btn.click( |
|
text2audio, |
|
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], |
|
|
|
outputs=[outputs], |
|
) |
|
|
|
gr.HTML( |
|
""" |
|
<div class="footer" style="text-align: center"> |
|
<p>Share your generations with the community by clicking the share icon at the top right the generated audio!</p> |
|
<p>Follow the latest update of AudioLDM 2 on our<a href="https://audioldm.github.io/audioldm2" |
|
style="text-decoration: underline;" target="_blank"> Github repo</a> </p> |
|
<p>Model by <a |
|
href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe |
|
Liu</a>. Code and demo by 🤗 Hugging Face.</p> |
|
</div> |
|
""" |
|
) |
|
gr.Examples( |
|
[ |
|
["A hammer is hitting a wooden surface.", "Low quality.", 10, 3.5, 45, 3], |
|
["A cat is meowing for attention.", "Low quality.", 10, 3.5, 45, 3], |
|
["An excited crowd cheering at a sports game.", "Low quality.", 10, 3.5, 45, 3], |
|
["Birds singing sweetly in a blooming garden.", "Low quality.", 10, 3.5, 45, 3], |
|
["A modern synthesizer creating futuristic soundscapes.", "Low quality.", 10, 3.5, 45, 3], |
|
["The vibrant beat of Brazilian samba drums.", "Low quality.", 10, 3.5, 45, 3], |
|
], |
|
fn=text2audio, |
|
inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], |
|
outputs=[outputs], |
|
cache_examples=True, |
|
) |
|
gr.HTML( |
|
""" |
|
<div class="acknowledgements"> <p>Essential Tricks for Enhancing the Quality of Your Generated |
|
Audio</p> |
|
<p>1. Try using more adjectives to describe your sound. For example: "A man is speaking |
|
clearly and slowly in a large room" is better than "A man is speaking".</p> |
|
<p>2. Try using different random seeds, which can significantly affect the quality of the generated |
|
output.</p> |
|
<p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or |
|
abstract objects that humans may not be familiar with.</p> |
|
<p>4. Using a negative prompt to not guide the diffusion process can improve the |
|
audio quality significantly. Try using negative prompts like 'low quality'.</p> |
|
</div> |
|
""" |
|
) |
|
with gr.Accordion("Additional information", open=False): |
|
gr.HTML( |
|
""" |
|
<div class="acknowledgments"> |
|
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, |
|
<a href="https://freesound.org/">Freesound</a> and <a |
|
href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo |
|
based on the <a |
|
href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK |
|
copyright exception</a> of data for academic research. |
|
</p> |
|
</div> |
|
""" |
|
) |
|
|
|
iface.queue(max_size=20).launch() |
|
|