Spaces:
Running
on
L4
Running
on
L4
""" | |
Feature Fusion for Varible-Length Data Processing | |
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py | |
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021 | |
""" | |
import torch | |
import torch.nn as nn | |
class DAF(nn.Module): | |
""" | |
直接相加 DirectAddFuse | |
""" | |
def __init__(self): | |
super(DAF, self).__init__() | |
def forward(self, x, residual): | |
return x + residual | |
class iAFF(nn.Module): | |
""" | |
多特征融合 iAFF | |
""" | |
def __init__(self, channels=64, r=4, type="2D"): | |
super(iAFF, self).__init__() | |
inter_channels = int(channels // r) | |
if type == "1D": | |
# 本地注意力 | |
self.local_att = nn.Sequential( | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
# 全局注意力 | |
self.global_att = nn.Sequential( | |
nn.AdaptiveAvgPool1d(1), | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
# 第二次本地注意力 | |
self.local_att2 = nn.Sequential( | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
# 第二次全局注意力 | |
self.global_att2 = nn.Sequential( | |
nn.AdaptiveAvgPool1d(1), | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
elif type == "2D": | |
# 本地注意力 | |
self.local_att = nn.Sequential( | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
# 全局注意力 | |
self.global_att = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
# 第二次本地注意力 | |
self.local_att2 = nn.Sequential( | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
# 第二次全局注意力 | |
self.global_att2 = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
else: | |
raise f"the type is not supported" | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x, residual): | |
flag = False | |
xa = x + residual | |
if xa.size(0) == 1: | |
xa = torch.cat([xa, xa], dim=0) | |
flag = True | |
xl = self.local_att(xa) | |
xg = self.global_att(xa) | |
xlg = xl + xg | |
wei = self.sigmoid(xlg) | |
xi = x * wei + residual * (1 - wei) | |
xl2 = self.local_att2(xi) | |
xg2 = self.global_att(xi) | |
xlg2 = xl2 + xg2 | |
wei2 = self.sigmoid(xlg2) | |
xo = x * wei2 + residual * (1 - wei2) | |
if flag: | |
xo = xo[0].unsqueeze(0) | |
return xo | |
class AFF(nn.Module): | |
""" | |
多特征融合 AFF | |
""" | |
def __init__(self, channels=64, r=4, type="2D"): | |
super(AFF, self).__init__() | |
inter_channels = int(channels // r) | |
if type == "1D": | |
self.local_att = nn.Sequential( | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
self.global_att = nn.Sequential( | |
nn.AdaptiveAvgPool1d(1), | |
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm1d(channels), | |
) | |
elif type == "2D": | |
self.local_att = nn.Sequential( | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
self.global_att = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
else: | |
raise f"the type is not supported." | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x, residual): | |
flag = False | |
xa = x + residual | |
if xa.size(0) == 1: | |
xa = torch.cat([xa, xa], dim=0) | |
flag = True | |
xl = self.local_att(xa) | |
xg = self.global_att(xa) | |
xlg = xl + xg | |
wei = self.sigmoid(xlg) | |
xo = 2 * x * wei + 2 * residual * (1 - wei) | |
if flag: | |
xo = xo[0].unsqueeze(0) | |
return xo | |