Spaces:
Runtime error
Runtime error
from typing import Literal, Union, Dict | |
import os | |
import shutil | |
import fire | |
from diffusers import StableDiffusionPipeline | |
from safetensors.torch import safe_open, save_file | |
import torch | |
from .lora import ( | |
tune_lora_scale, | |
patch_pipe, | |
collapse_lora, | |
monkeypatch_remove_lora, | |
) | |
from .lora_manager import lora_join | |
from .to_ckpt_v2 import convert_to_ckpt | |
def _text_lora_path(path: str) -> str: | |
assert path.endswith(".pt"), "Only .pt files are supported" | |
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"]) | |
def add( | |
path_1: str, | |
path_2: str, | |
output_path: str, | |
alpha_1: float = 0.5, | |
alpha_2: float = 0.5, | |
mode: Literal[ | |
"lpl", | |
"upl", | |
"upl-ckpt-v2", | |
] = "lpl", | |
with_text_lora: bool = False, | |
): | |
print("Lora Add, mode " + mode) | |
if mode == "lpl": | |
if path_1.endswith(".pt") and path_2.endswith(".pt"): | |
for _path_1, _path_2, opt in [(path_1, path_2, "unet")] + ( | |
[(_text_lora_path(path_1), _text_lora_path(path_2), "text_encoder")] | |
if with_text_lora | |
else [] | |
): | |
print("Loading", _path_1, _path_2) | |
out_list = [] | |
if opt == "text_encoder": | |
if not os.path.exists(_path_1): | |
print(f"No text encoder found in {_path_1}, skipping...") | |
continue | |
if not os.path.exists(_path_2): | |
print(f"No text encoder found in {_path_1}, skipping...") | |
continue | |
l1 = torch.load(_path_1) | |
l2 = torch.load(_path_2) | |
l1pairs = zip(l1[::2], l1[1::2]) | |
l2pairs = zip(l2[::2], l2[1::2]) | |
for (x1, y1), (x2, y2) in zip(l1pairs, l2pairs): | |
# print("Merging", x1.shape, y1.shape, x2.shape, y2.shape) | |
x1.data = alpha_1 * x1.data + alpha_2 * x2.data | |
y1.data = alpha_1 * y1.data + alpha_2 * y2.data | |
out_list.append(x1) | |
out_list.append(y1) | |
if opt == "unet": | |
print("Saving merged UNET to", output_path) | |
torch.save(out_list, output_path) | |
elif opt == "text_encoder": | |
print("Saving merged text encoder to", _text_lora_path(output_path)) | |
torch.save( | |
out_list, | |
_text_lora_path(output_path), | |
) | |
elif path_1.endswith(".safetensors") and path_2.endswith(".safetensors"): | |
safeloras_1 = safe_open(path_1, framework="pt", device="cpu") | |
safeloras_2 = safe_open(path_2, framework="pt", device="cpu") | |
metadata = dict(safeloras_1.metadata()) | |
metadata.update(dict(safeloras_2.metadata())) | |
ret_tensor = {} | |
for keys in set(list(safeloras_1.keys()) + list(safeloras_2.keys())): | |
if keys.startswith("text_encoder") or keys.startswith("unet"): | |
tens1 = safeloras_1.get_tensor(keys) | |
tens2 = safeloras_2.get_tensor(keys) | |
tens = alpha_1 * tens1 + alpha_2 * tens2 | |
ret_tensor[keys] = tens | |
else: | |
if keys in safeloras_1.keys(): | |
tens1 = safeloras_1.get_tensor(keys) | |
else: | |
tens1 = safeloras_2.get_tensor(keys) | |
ret_tensor[keys] = tens1 | |
save_file(ret_tensor, output_path, metadata) | |
elif mode == "upl": | |
print( | |
f"Merging UNET/CLIP from {path_1} with LoRA from {path_2} to {output_path}. Merging ratio : {alpha_1}." | |
) | |
loaded_pipeline = StableDiffusionPipeline.from_pretrained( | |
path_1, | |
).to("cpu") | |
patch_pipe(loaded_pipeline, path_2) | |
collapse_lora(loaded_pipeline.unet, alpha_1) | |
collapse_lora(loaded_pipeline.text_encoder, alpha_1) | |
monkeypatch_remove_lora(loaded_pipeline.unet) | |
monkeypatch_remove_lora(loaded_pipeline.text_encoder) | |
loaded_pipeline.save_pretrained(output_path) | |
elif mode == "upl-ckpt-v2": | |
assert output_path.endswith(".ckpt"), "Only .ckpt files are supported" | |
name = os.path.basename(output_path)[0:-5] | |
print( | |
f"You will be using {name} as the token in A1111 webui. Make sure {name} is unique enough token." | |
) | |
loaded_pipeline = StableDiffusionPipeline.from_pretrained( | |
path_1, | |
).to("cpu") | |
tok_dict = patch_pipe(loaded_pipeline, path_2, patch_ti=False) | |
collapse_lora(loaded_pipeline.unet, alpha_1) | |
collapse_lora(loaded_pipeline.text_encoder, alpha_1) | |
monkeypatch_remove_lora(loaded_pipeline.unet) | |
monkeypatch_remove_lora(loaded_pipeline.text_encoder) | |
_tmp_output = output_path + ".tmp" | |
loaded_pipeline.save_pretrained(_tmp_output) | |
convert_to_ckpt(_tmp_output, output_path, as_half=True) | |
# remove the tmp_output folder | |
shutil.rmtree(_tmp_output) | |
keys = sorted(tok_dict.keys()) | |
tok_catted = torch.stack([tok_dict[k] for k in keys]) | |
ret = { | |
"string_to_token": {"*": torch.tensor(265)}, | |
"string_to_param": {"*": tok_catted}, | |
"name": name, | |
} | |
torch.save(ret, output_path[:-5] + ".pt") | |
print( | |
f"Textual embedding saved as {output_path[:-5]}.pt, put it in the embedding folder and use it as {name} in A1111 repo, " | |
) | |
elif mode == "ljl": | |
print("Using Join mode : alpha will not have an effect here.") | |
assert path_1.endswith(".safetensors") and path_2.endswith( | |
".safetensors" | |
), "Only .safetensors files are supported" | |
safeloras_1 = safe_open(path_1, framework="pt", device="cpu") | |
safeloras_2 = safe_open(path_2, framework="pt", device="cpu") | |
total_tensor, total_metadata, _, _ = lora_join([safeloras_1, safeloras_2]) | |
save_file(total_tensor, output_path, total_metadata) | |
else: | |
print("Unknown mode", mode) | |
raise ValueError(f"Unknown mode {mode}") | |
def main(): | |
fire.Fire(add) | |