LucidDreamer / train.py
haodongli's picture
Update train.py
d3b61b1
raw
history blame
26.2 kB
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import random
import imageio
import os
import torch
import torch.nn as nn
from random import randint
from utils.loss_utils import l1_loss, ssim, tv_loss
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams, GenerateCamParams, GuidanceParams
import math
import yaml
from torchvision.utils import save_image
import torchvision.transforms as T
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
sys.path.append('/root/yangxin/codebase/3D_Playground/GSDF')
def adjust_text_embeddings(embeddings, azimuth, guidance_opt):
#TODO: add prenerg functions
text_z_list = []
weights_list = []
K = 0
#for b in range(azimuth):
text_z_, weights_ = get_pos_neg_text_embeddings(embeddings, azimuth, guidance_opt)
K = max(K, weights_.shape[0])
text_z_list.append(text_z_)
weights_list.append(weights_)
# Interleave text_embeddings from different dirs to form a batch
text_embeddings = []
for i in range(K):
for text_z in text_z_list:
# if uneven length, pad with the first embedding
text_embeddings.append(text_z[i] if i < len(text_z) else text_z[0])
text_embeddings = torch.stack(text_embeddings, dim=0) # [B * K, 77, 768]
# Interleave weights from different dirs to form a batch
weights = []
for i in range(K):
for weights_ in weights_list:
weights.append(weights_[i] if i < len(weights_) else torch.zeros_like(weights_[0]))
weights = torch.stack(weights, dim=0) # [B * K]
return text_embeddings, weights
def get_pos_neg_text_embeddings(embeddings, azimuth_val, opt):
if azimuth_val >= -90 and azimuth_val < 90:
if azimuth_val >= 0:
r = 1 - azimuth_val / 90
else:
r = 1 + azimuth_val / 90
start_z = embeddings['front']
end_z = embeddings['side']
# if random.random() < 0.3:
# r = r + random.gauss(0, 0.08)
pos_z = r * start_z + (1 - r) * end_z
text_z = torch.cat([pos_z, embeddings['front'], embeddings['side']], dim=0)
if r > 0.8:
front_neg_w = 0.0
else:
front_neg_w = math.exp(-r * opt.front_decay_factor) * opt.negative_w
if r < 0.2:
side_neg_w = 0.0
else:
side_neg_w = math.exp(-(1-r) * opt.side_decay_factor) * opt.negative_w
weights = torch.tensor([1.0, front_neg_w, side_neg_w])
else:
if azimuth_val >= 0:
r = 1 - (azimuth_val - 90) / 90
else:
r = 1 + (azimuth_val + 90) / 90
start_z = embeddings['side']
end_z = embeddings['back']
# if random.random() < 0.3:
# r = r + random.gauss(0, 0.08)
pos_z = r * start_z + (1 - r) * end_z
text_z = torch.cat([pos_z, embeddings['side'], embeddings['front']], dim=0)
front_neg_w = opt.negative_w
if r > 0.8:
side_neg_w = 0.0
else:
side_neg_w = math.exp(-r * opt.side_decay_factor) * opt.negative_w / 2
weights = torch.tensor([1.0, side_neg_w, front_neg_w])
return text_z, weights.to(text_z.device)
def prepare_embeddings(guidance_opt, guidance):
embeddings = {}
# text embeddings (stable-diffusion) and (IF)
embeddings['default'] = guidance.get_text_embeds([guidance_opt.text])
embeddings['uncond'] = guidance.get_text_embeds([guidance_opt.negative])
for d in ['front', 'side', 'back']:
embeddings[d] = guidance.get_text_embeds([f"{guidance_opt.text}, {d} view"])
embeddings['inverse_text'] = guidance.get_text_embeds(guidance_opt.inverse_text)
return embeddings
def guidance_setup(guidance_opt):
if guidance_opt.guidance=="SD":
from guidance.sd_utils import StableDiffusion
guidance = StableDiffusion(guidance_opt.g_device, guidance_opt.fp16, guidance_opt.vram_O,
guidance_opt.t_range, guidance_opt.max_t_range,
num_train_timesteps=guidance_opt.num_train_timesteps,
ddim_inv=guidance_opt.ddim_inv,
textual_inversion_path = guidance_opt.textual_inversion_path,
LoRA_path = guidance_opt.LoRA_path,
guidance_opt=guidance_opt)
else:
raise ValueError(f'{guidance_opt.guidance} not supported.')
if guidance is not None:
for p in guidance.parameters():
p.requires_grad = False
embeddings = prepare_embeddings(guidance_opt, guidance)
return guidance, embeddings
def training(dataset, opt, pipe, gcams, guidance_opt, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, save_video):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gcams, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset._white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device=dataset.data_device)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
#
save_folder = os.path.join(dataset._model_path,"train_process/")
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs
print('train_process is in :', save_folder)
#controlnet
use_control_net = False
#set up pretrain diffusion models and text_embedings
guidance, embeddings = guidance_setup(guidance_opt)
viewpoint_stack = None
viewpoint_stack_around = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
if opt.save_process:
save_folder_proc = os.path.join(scene.args._model_path,"process_videos/")
if not os.path.exists(save_folder_proc):
os.makedirs(save_folder_proc) # makedirs
process_view_points = scene.getCircleVideoCameras(batch_size=opt.pro_frames_num,render45=opt.pro_render_45).copy()
save_process_iter = opt.iterations // len(process_view_points)
pro_img_frames = []
for iteration in range(first_iter, opt.iterations + 1):
#TODO: DEBUG NETWORK_GUI
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, guidance_opt.text)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
gaussians.update_feature_learning_rate(iteration)
gaussians.update_rotation_learning_rate(iteration)
gaussians.update_scaling_learning_rate(iteration)
# Every 500 its we increase the levels of SH up to a maximum degree
if iteration % 500 == 0:
gaussians.oneupSHdegree()
# progressively relaxing view range
if not opt.use_progressive:
if iteration >= opt.progressive_view_iter and iteration % opt.scale_up_cameras_iter == 0:
scene.pose_args.fovy_range[0] = max(scene.pose_args.max_fovy_range[0], scene.pose_args.fovy_range[0] * opt.fovy_scale_up_factor[0])
scene.pose_args.fovy_range[1] = min(scene.pose_args.max_fovy_range[1], scene.pose_args.fovy_range[1] * opt.fovy_scale_up_factor[1])
scene.pose_args.radius_range[1] = max(scene.pose_args.max_radius_range[1], scene.pose_args.radius_range[1] * opt.scale_up_factor)
scene.pose_args.radius_range[0] = max(scene.pose_args.max_radius_range[0], scene.pose_args.radius_range[0] * opt.scale_up_factor)
scene.pose_args.theta_range[1] = min(scene.pose_args.max_theta_range[1], scene.pose_args.theta_range[1] * opt.phi_scale_up_factor)
scene.pose_args.theta_range[0] = max(scene.pose_args.max_theta_range[0], scene.pose_args.theta_range[0] * 1/opt.phi_scale_up_factor)
# opt.reset_resnet_iter = max(500, opt.reset_resnet_iter // 1.25)
scene.pose_args.phi_range[0] = max(scene.pose_args.max_phi_range[0] , scene.pose_args.phi_range[0] * opt.phi_scale_up_factor)
scene.pose_args.phi_range[1] = min(scene.pose_args.max_phi_range[1], scene.pose_args.phi_range[1] * opt.phi_scale_up_factor)
print('scale up theta_range to:', scene.pose_args.theta_range)
print('scale up radius_range to:', scene.pose_args.radius_range)
print('scale up phi_range to:', scene.pose_args.phi_range)
print('scale up fovy_range to:', scene.pose_args.fovy_range)
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getRandTrainCameras().copy()
C_batch_size = guidance_opt.C_batch_size
viewpoint_cams = []
images = []
text_z_ = []
weights_ = []
depths = []
alphas = []
scales = []
text_z_inverse =torch.cat([embeddings['uncond'],embeddings['inverse_text']], dim=0)
for i in range(C_batch_size):
try:
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
except:
viewpoint_stack = scene.getRandTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
#pred text_z
azimuth = viewpoint_cam.delta_azimuth
text_z = [embeddings['uncond']]
if guidance_opt.perpneg:
text_z_comp, weights = adjust_text_embeddings(embeddings, azimuth, guidance_opt)
text_z.append(text_z_comp)
weights_.append(weights)
else:
if azimuth >= -90 and azimuth < 90:
if azimuth >= 0:
r = 1 - azimuth / 90
else:
r = 1 + azimuth / 90
start_z = embeddings['front']
end_z = embeddings['side']
else:
if azimuth >= 0:
r = 1 - (azimuth - 90) / 90
else:
r = 1 + (azimuth + 90) / 90
start_z = embeddings['side']
end_z = embeddings['back']
text_z.append(r * start_z + (1 - r) * end_z)
text_z = torch.cat(text_z, dim=0)
text_z_.append(text_z)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background,
sh_deg_aug_ratio = dataset.sh_deg_aug_ratio,
bg_aug_ratio = dataset.bg_aug_ratio,
shs_aug_ratio = dataset.shs_aug_ratio,
scale_aug_ratio = dataset.scale_aug_ratio)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
depth, alpha = render_pkg["depth"], render_pkg["alpha"]
scales.append(render_pkg["scales"])
images.append(image)
depths.append(depth)
alphas.append(alpha)
viewpoint_cams.append(viewpoint_cams)
images = torch.stack(images, dim=0)
depths = torch.stack(depths, dim=0)
alphas = torch.stack(alphas, dim=0)
# Loss
warm_up_rate = 1. - min(iteration/opt.warmup_iter,1.)
guidance_scale = guidance_opt.guidance_scale
_aslatent = False
if iteration < opt.geo_iter or random.random()< opt.as_latent_ratio:
_aslatent=True
if iteration > opt.use_control_net_iter and (random.random() < guidance_opt.controlnet_ratio):
use_control_net = True
if guidance_opt.perpneg:
loss = guidance.train_step_perpneg(torch.stack(text_z_, dim=1), images,
pred_depth=depths, pred_alpha=alphas,
grad_scale=guidance_opt.lambda_guidance,
use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate,
weights = torch.stack(weights_, dim=1), resolution=(gcams.image_h, gcams.image_w),
guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse)
else:
loss = guidance.train_step(torch.stack(text_z_, dim=1), images,
pred_depth=depths, pred_alpha=alphas,
grad_scale=guidance_opt.lambda_guidance,
use_control_net = use_control_net ,save_folder = save_folder, iteration = iteration, warm_up_rate=warm_up_rate,
resolution=(gcams.image_h, gcams.image_w),
guidance_opt=guidance_opt,as_latent=_aslatent, embedding_inverse = text_z_inverse)
#raise ValueError(f'original version not supported.')
scales = torch.stack(scales, dim=0)
loss_scale = torch.mean(scales,dim=-1).mean()
loss_tv = tv_loss(images) + tv_loss(depths)
# loss_bin = torch.mean(torch.min(alphas - 0.0001, 1 - alphas))
loss = loss + opt.lambda_tv * loss_tv + opt.lambda_scale * loss_scale #opt.lambda_tv * loss_tv + opt.lambda_bin * loss_bin + opt.lambda_scale * loss_scale +
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if opt.save_process:
if iteration % save_process_iter == 0 and len(process_view_points) > 0:
viewpoint_cam_p = process_view_points.pop(0)
render_p = render(viewpoint_cam_p, gaussians, pipe, background, test=True)
img_p = torch.clamp(render_p["render"], 0.0, 1.0)
img_p = img_p.detach().cpu().permute(1,2,0).numpy()
img_p = (img_p * 255).round().astype('uint8')
pro_img_frames.append(img_p)
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in testing_iterations):
if save_video:
video_path = video_inference(iteration, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0: #or (dataset._white_background and iteration == opt.densify_from_iter)
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene._model_path + "/chkpnt" + str(iteration) + ".pth")
if opt.save_process:
imageio.mimwrite(os.path.join(save_folder_proc, "video_rgb.mp4"), pro_img_frames, fps=30, quality=8)
return video_path, os.path.join(save_folder_proc, "video_rgb.mp4")
def prepare_output_and_logger(args):
if not args._model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args._model_path = os.path.join("./output/", args.workspace)
# Set up output folder
print("Output folder: {}".format(args._model_path))
os.makedirs(args._model_path, exist_ok = True)
# copy configs
if args.opt_path is not None:
os.system(' '.join(['cp', args.opt_path, os.path.join(args._model_path, 'config.yaml')]))
with open(os.path.join(args._model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args._model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
save_folder = os.path.join(scene.args._model_path,"test_six_views/{}_iteration".format(iteration))
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs 创建文件时如果路径不存在会创建这个路径
print('test views is in :', save_folder)
torch.cuda.empty_cache()
config = ({'name': 'test', 'cameras' : scene.getTestCameras()})
if config['cameras'] and len(config['cameras']) > 0:
for idx, viewpoint in enumerate(config['cameras']):
render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True)
rgb, depth = render_out["render"],render_out["depth"]
if depth is not None:
depth_norm = depth/depth.max()
save_image(depth_norm,os.path.join(save_folder,"render_depth_{}.png".format(viewpoint.uid)))
image = torch.clamp(rgb, 0.0, 1.0)
save_image(image,os.path.join(save_folder,"render_view_{}.png".format(viewpoint.uid)))
if tb_writer:
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.uid), image[None], global_step=iteration)
print("\n[ITER {}] Eval Done!".format(iteration))
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
def video_inference(iteration, scene : Scene, renderFunc, renderArgs):
sharp = T.RandomAdjustSharpness(3, p=1.0)
save_folder = os.path.join(scene.args._model_path,"videos/{}_iteration".format(iteration))
if not os.path.exists(save_folder):
os.makedirs(save_folder) # makedirs
print('videos is in :', save_folder)
torch.cuda.empty_cache()
config = ({'name': 'test', 'cameras' : scene.getCircleVideoCameras()})
if config['cameras'] and len(config['cameras']) > 0:
img_frames = []
depth_frames = []
print("Generating Video using", len(config['cameras']), "different view points")
for idx, viewpoint in enumerate(config['cameras']):
render_out = renderFunc(viewpoint, scene.gaussians, *renderArgs, test=True)
rgb,depth = render_out["render"],render_out["depth"]
if depth is not None:
depth_norm = depth/depth.max()
depths = torch.clamp(depth_norm, 0.0, 1.0)
depths = depths.detach().cpu().permute(1,2,0).numpy()
depths = (depths * 255).round().astype('uint8')
depth_frames.append(depths)
image = torch.clamp(rgb, 0.0, 1.0)
image = image.detach().cpu().permute(1,2,0).numpy()
image = (image * 255).round().astype('uint8')
img_frames.append(image)
#save_image(image,os.path.join(save_folder,"lora_view_{}.jpg".format(viewpoint.uid)))
# Img to Numpy
imageio.mimwrite(os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration)), img_frames, fps=30, quality=8)
if len(depth_frames) > 0:
imageio.mimwrite(os.path.join(save_folder, "video_depth_{}.mp4".format(iteration)), depth_frames, fps=30, quality=8)
print("\n[ITER {}] Video Save Done!".format(iteration))
torch.cuda.empty_cache()
return os.path.join(save_folder, "video_rgb_{}.mp4".format(iteration))
def args_parser(default_opt=None):
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--opt', type=str, default=default_opt)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_ratio", type=int, default=5) # [2500,5000,7500,10000,12000]
parser.add_argument("--save_ratio", type=int, default=2) # [10000,12000]
parser.add_argument("--save_video", type=bool, default=False)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--cuda", type=str, default='0')
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
gcp = GenerateCamParams(parser)
gp = GuidanceParams(parser)
args = parser.parse_args(sys.argv[1:])
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
if args.opt is not None:
with open(args.opt) as f:
opts = yaml.load(f, Loader=yaml.FullLoader)
lp.load_yaml(opts.get('ModelParams', None))
op.load_yaml(opts.get('OptimizationParams', None))
pp.load_yaml(opts.get('PipelineParams', None))
gcp.load_yaml(opts.get('GenerateCamParams', None))
gp.load_yaml(opts.get('GuidanceParams', None))
lp.opt_path = args.opt
args.port = opts['port']
args.save_video = opts.get('save_video', True)
args.seed = opts.get('seed', 0)
args.device = opts.get('device', 'cuda')
# override device
gp.g_device = args.device
lp.data_device = args.device
gcp.device = args.device
return args, lp, op, pp, gcp, gp
def start_training(args, lp, op, pp, gcp, gp):
# save iterations
test_iter = [1] + [k * op.iterations // args.test_ratio for k in range(1, args.test_ratio)] + [op.iterations]
args.test_iterations = test_iter
save_iter = [k * op.iterations // args.save_ratio for k in range(1, args.save_ratio)] + [op.iterations]
args.save_iterations = save_iter
print('Test iter:', args.test_iterations)
print('Save iter:', args.save_iterations)
print("Optimizing " + lp._model_path)
# Initialize system state (RNG)
safe_state(args.quiet, seed=args.seed)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
video_path, pro_video_path = training(lp, op, pp, gcp, gp, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.save_video)
# All done
print("\nTraining complete.")
return video_path, pro_video_path
if __name__ == "__main__":
args, lp, op, pp, gcp, gp = args_parser()
start_training(args, lp, op, pp, gcp, gp)