Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import os | |
import random | |
import json | |
from utils.system_utils import searchForMaxIteration | |
from scene.dataset_readers import sceneLoadTypeCallbacks,GenerateRandomCameras,GeneratePurnCameras,GenerateCircleCameras | |
from scene.gaussian_model import GaussianModel | |
from arguments import ModelParams, GenerateCamParams | |
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON, cameraList_from_RcamInfos | |
class Scene: | |
gaussians : GaussianModel | |
def __init__(self, args : ModelParams, pose_args : GenerateCamParams, gaussians : GaussianModel, load_iteration=None, shuffle=False, resolution_scales=[1.0]): | |
"""b | |
:param path: Path to colmap scene main folder. | |
""" | |
self.model_path = args._model_path | |
self.pretrained_model_path = args.pretrained_model_path | |
self.loaded_iter = None | |
self.gaussians = gaussians | |
self.resolution_scales = resolution_scales | |
self.pose_args = pose_args | |
self.args = args | |
if load_iteration: | |
if load_iteration == -1: | |
self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud")) | |
else: | |
self.loaded_iter = load_iteration | |
print("Loading trained model at iteration {}".format(self.loaded_iter)) | |
self.test_cameras = {} | |
scene_info = sceneLoadTypeCallbacks["RandomCam"](self.model_path ,pose_args) | |
json_cams = [] | |
camlist = [] | |
if scene_info.test_cameras: | |
camlist.extend(scene_info.test_cameras) | |
for id, cam in enumerate(camlist): | |
json_cams.append(camera_to_JSON(id, cam)) | |
with open(os.path.join(self.model_path, "cameras.json"), 'w') as file: | |
json.dump(json_cams, file) | |
if shuffle: | |
random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling | |
self.cameras_extent = pose_args.default_radius # scene_info.nerf_normalization["radius"] | |
for resolution_scale in resolution_scales: | |
self.test_cameras[resolution_scale] = cameraList_from_RcamInfos(scene_info.test_cameras, resolution_scale, self.pose_args) | |
if self.loaded_iter: | |
self.gaussians.load_ply(os.path.join(self.model_path, | |
"point_cloud", | |
"iteration_" + str(self.loaded_iter), | |
"point_cloud.ply")) | |
elif self.pretrained_model_path is not None: | |
self.gaussians.load_ply(self.pretrained_model_path) | |
else: | |
self.gaussians.create_from_pcd(scene_info.point_cloud, self.cameras_extent) | |
def save(self, iteration): | |
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration)) | |
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply")) | |
def getRandTrainCameras(self, scale=1.0): | |
rand_train_cameras = GenerateRandomCameras(self.pose_args, self.args.batch, SSAA=True) | |
train_cameras = {} | |
for resolution_scale in self.resolution_scales: | |
train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args, SSAA=True) | |
return train_cameras[scale] | |
def getPurnTrainCameras(self, scale=1.0): | |
rand_train_cameras = GeneratePurnCameras(self.pose_args) | |
train_cameras = {} | |
for resolution_scale in self.resolution_scales: | |
train_cameras[resolution_scale] = cameraList_from_RcamInfos(rand_train_cameras, resolution_scale, self.pose_args) | |
return train_cameras[scale] | |
def getTestCameras(self, scale=1.0): | |
return self.test_cameras[scale] | |
def getCircleVideoCameras(self, scale=1.0,batch_size=120, render45 = True): | |
video_circle_cameras = GenerateCircleCameras(self.pose_args,batch_size,render45) | |
video_cameras = {} | |
for resolution_scale in self.resolution_scales: | |
video_cameras[resolution_scale] = cameraList_from_RcamInfos(video_circle_cameras, resolution_scale, self.pose_args) | |
return video_cameras[scale] |