Lotus_Normal / infer.py
haodongli's picture
add resizing
4d23710
raw
history blame
12.2 kB
# from utils.args import parse_args
import logging
import os
import argparse
from pathlib import Path
from PIL import Image
import numpy as np
import torch
from tqdm.auto import tqdm
from diffusers.utils import check_min_version
from pipeline import LotusGPipeline, LotusDPipeline
from utils.image_utils import colorize_depth_map
from utils.seed_all import seed_all
from contextlib import nullcontext
import cv2
check_min_version('0.28.0.dev0')
def infer_pipe(pipe, image_input, task_name, seed, device):
if seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(seed)
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe.device.type)
with autocast_ctx:
test_image = Image.open(image_input).convert('RGB')
test_image = np.array(test_image).astype(np.float32)
if max(test_image.shape[:2]) > 1024:
# resize for a maximum size of 1024
scale = 1024 / max(test_image.shape[:2])
elif min(test_image.shape[:2]) < 384:
# resize for a minimum size of 384
scale = 384 / min(test_image.shape[:2])
else:
scale = 1.0
new_shape = (int(test_image.shape[1] * scale), int(test_image.shape[0] * scale))
test_image = cv2.resize(test_image, new_shape)
test_image = test_image.astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
# Run
pred = pipe(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[999],
task_emb=task_emb,
).images[0]
# Post-process the prediction
if task_name == 'depth':
output_npy = pred.mean(axis=-1)
output_color = colorize_depth_map(output_npy)
else:
output_npy = pred
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
return output_color
def lotus_video(input_video, task_name, seed, device):
if task_name == 'depth':
model_g = 'jingheya/lotus-depth-g-v1-0'
model_d = 'jingheya/lotus-depth-d-v1-1'
else:
model_g = 'jingheya/lotus-normal-g-v1-0'
model_d = 'jingheya/lotus-normal-d-v1-0'
dtype = torch.float16
pipe_g = LotusGPipeline.from_pretrained(
model_g,
torch_dtype=dtype,
)
pipe_d = LotusDPipeline.from_pretrained(
model_d,
torch_dtype=dtype,
)
pipe_g.to(device)
pipe_d.to(device)
pipe_g.set_progress_bar_config(disable=True)
pipe_d.set_progress_bar_config(disable=True)
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
# load the video and split it into frames
cap = cv2.VideoCapture(input_video)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
logging.info(f"There are {len(frames)} frames in the video.")
if seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(seed)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
output_g = []
output_d = []
for frame in frames:
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe_g.device.type)
with autocast_ctx:
test_image = frame
test_image = np.array(test_image).astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
# Run
pred_g = pipe_g(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[999],
task_emb=task_emb,
).images[0]
pred_d = pipe_d(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[999],
task_emb=task_emb,
).images[0]
# Post-process the prediction
if task_name == 'depth':
output_npy_g = pred_g.mean(axis=-1)
output_color_g = colorize_depth_map(output_npy_g)
output_npy_d = pred_d.mean(axis=-1)
output_color_d = colorize_depth_map(output_npy_d)
else:
output_npy_g = pred_g
output_color_g = Image.fromarray((output_npy_g * 255).astype(np.uint8))
output_npy_d = pred_d
output_color_d = Image.fromarray((output_npy_d * 255).astype(np.uint8))
output_g.append(output_color_g)
output_d.append(output_color_d)
return output_g, output_d
def lotus(image_input, task_name, seed, device):
if task_name == 'depth':
model_g = 'jingheya/lotus-depth-g-v1-0'
model_d = 'jingheya/lotus-depth-d-v1-0'
else:
model_g = 'jingheya/lotus-normal-g-v1-0'
model_d = 'jingheya/lotus-normal-d-v1-0'
dtype = torch.float16
pipe_g = LotusGPipeline.from_pretrained(
model_g,
torch_dtype=dtype,
)
pipe_d = LotusDPipeline.from_pretrained(
model_d,
torch_dtype=dtype,
)
pipe_g.to(device)
pipe_d.to(device)
pipe_g.set_progress_bar_config(disable=True)
pipe_d.set_progress_bar_config(disable=True)
logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
output_d = infer_pipe(pipe_d, image_input, task_name, seed, device)
return output_g, output_d
def parse_args():
'''Set the Args'''
parser = argparse.ArgumentParser(
description="Run Lotus..."
)
# model settings
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
help="pretrained model path from hugging face or local dir",
)
parser.add_argument(
"--prediction_type",
type=str,
default="sample",
help="The used prediction_type. ",
)
parser.add_argument(
"--timestep",
type=int,
default=999,
)
parser.add_argument(
"--mode",
type=str,
default="regression", # "generation"
help="Whether to use the generation or regression pipeline."
)
parser.add_argument(
"--task_name",
type=str,
default="depth", # "normal"
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
# inference settings
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
parser.add_argument(
"--input_dir", type=str, required=True, help="Input directory."
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
args = parser.parse_args()
return args
def main():
logging.basicConfig(level=logging.INFO)
logging.info(f"Run inference...")
args = parse_args()
# -------------------- Preparation --------------------
# Random seed
if args.seed is not None:
seed_all(args.seed)
# Output directories
os.makedirs(args.output_dir, exist_ok=True)
logging.info(f"Output dir = {args.output_dir}")
output_dir_color = os.path.join(args.output_dir, f'{args.task_name}_vis')
output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}')
if not os.path.exists(output_dir_color): os.makedirs(output_dir_color)
if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)
# half_precision
if args.half_precision:
dtype = torch.float16
logging.info(f"Running with half precision ({dtype}).")
else:
dtype = torch.float16
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"Device = {device}")
# -------------------- Data --------------------
root_dir = Path(args.input_dir)
test_images = list(root_dir.rglob('*.png')) + list(root_dir.rglob('*.jpg'))
test_images = sorted(test_images)
print('==> There are', len(test_images), 'images for validation.')
# -------------------- Model --------------------
if args.mode == 'generation':
pipeline = LotusGPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
elif args.mode == 'regression':
pipeline = LotusDPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=dtype,
)
else:
raise ValueError(f'Invalid mode: {args.mode}')
logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")
pipeline = pipeline.to(device)
pipeline.set_progress_bar_config(disable=True)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
# -------------------- Inference and saving --------------------
with torch.no_grad():
for i in tqdm(range(len(test_images))):
# Preprocess validation image
test_image = Image.open(test_images[i]).convert('RGB')
test_image = np.array(test_image).astype(np.float16)
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
test_image = test_image / 127.5 - 1.0
test_image = test_image.to(device)
task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)
# Run
pred = pipeline(
rgb_in=test_image,
prompt='',
num_inference_steps=1,
generator=generator,
# guidance_scale=0,
output_type='np',
timesteps=[args.timestep],
task_emb=task_emb,
).images[0]
# Post-process the prediction
save_file_name = os.path.basename(test_images[i])[:-4]
if args.task_name == 'depth':
output_npy = pred.mean(axis=-1)
output_color = colorize_depth_map(output_npy)
else:
output_npy = pred
output_color = Image.fromarray((output_npy * 255).astype(np.uint8))
output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
print('==> Inference is done. \n==> Results saved to:', args.output_dir)
if __name__ == '__main__':
main()