|
import torch
|
|
import numpy as np
|
|
import math
|
|
from PIL import Image
|
|
from torch.nn.functional import softmax
|
|
|
|
def translate(img, model, max_seq_length=128, sos_token=1, eos_token=2):
|
|
"data: BxCXHxW"
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
src = model.cnn(img)
|
|
memory = model.transformer.forward_encoder(src)
|
|
|
|
translated_sentence = [[sos_token]*len(img)]
|
|
|
|
max_length = 0
|
|
|
|
while max_length <= max_seq_length and not all(np.any(np.asarray(translated_sentence).T==eos_token, axis=1)):
|
|
tgt_inp = torch.LongTensor(translated_sentence)
|
|
|
|
output, memory = model.transformer.forward_decoder(tgt_inp, memory)
|
|
output = softmax(output, dim=-1)
|
|
|
|
_, indices = torch.topk(output, 5)
|
|
|
|
indices = indices[:, -1, 0]
|
|
indices = indices.tolist()
|
|
|
|
translated_sentence.append(indices)
|
|
max_length += 1
|
|
|
|
translated_sentence = np.asarray(translated_sentence).T
|
|
|
|
return translated_sentence
|
|
|
|
def resize(w, h, expected_height, image_min_width, image_max_width):
|
|
new_w = int(expected_height * float(w) / float(h))
|
|
round_to = 10
|
|
new_w = math.ceil(new_w/round_to)*round_to
|
|
new_w = max(new_w, image_min_width)
|
|
new_w = min(new_w, image_max_width)
|
|
|
|
return new_w, expected_height
|
|
|
|
def process_image(image, image_height, image_min_width, image_max_width):
|
|
img = image.convert('RGB')
|
|
|
|
w, h = img.size
|
|
new_w, image_height = resize(w, h, image_height, image_min_width, image_max_width)
|
|
|
|
img = img.resize((new_w, image_height), Image.Resampling.LANCZOS)
|
|
|
|
img = np.asarray(img).transpose(2,0, 1)
|
|
img = img/255
|
|
return img
|
|
|
|
def process_input(image, image_height, image_min_width, image_max_width):
|
|
img = process_image(image, image_height, image_min_width, image_max_width)
|
|
img = img[np.newaxis, ...]
|
|
img = torch.FloatTensor(img)
|
|
return img
|
|
|