|
from einops import rearrange
|
|
from torchvision import models
|
|
import math
|
|
import torch
|
|
from torch import nn
|
|
|
|
class LanguageTransformer(nn.Module):
|
|
def __init__(self, vocab_size,
|
|
d_model, nhead,
|
|
num_encoder_layers, num_decoder_layers,
|
|
dim_feedforward, max_seq_length,
|
|
pos_dropout, trans_dropout):
|
|
super().__init__()
|
|
|
|
self.d_model = d_model
|
|
self.embed_tgt = nn.Embedding(vocab_size, d_model)
|
|
self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length)
|
|
|
|
|
|
self.transformer = nn.Transformer(d_model, nhead,
|
|
num_encoder_layers, num_decoder_layers,
|
|
dim_feedforward, trans_dropout)
|
|
|
|
self.fc = nn.Linear(d_model, vocab_size)
|
|
|
|
def forward(self, src, tgt, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
|
"""
|
|
Shape:
|
|
- src: (W, N, C)
|
|
- tgt: (T, N)
|
|
- src_key_padding_mask: (N, S)
|
|
- tgt_key_padding_mask: (N, T)
|
|
- memory_key_padding_mask: (N, S)
|
|
- output: (N, T, E)
|
|
|
|
"""
|
|
tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(src.device)
|
|
|
|
src = self.pos_enc(src*math.sqrt(self.d_model))
|
|
|
|
|
|
tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
|
|
|
|
output = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
|
|
|
|
output = output.transpose(0, 1)
|
|
return self.fc(output)
|
|
|
|
def gen_nopeek_mask(self, length):
|
|
mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
|
|
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
|
|
|
return mask
|
|
|
|
def forward_encoder(self, src):
|
|
src = self.pos_enc(src*math.sqrt(self.d_model))
|
|
memory = self.transformer.encoder(src)
|
|
return memory
|
|
|
|
def forward_decoder(self, tgt, memory):
|
|
tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(tgt.device)
|
|
tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
|
|
|
|
output = self.transformer.decoder(tgt, memory, tgt_mask=tgt_mask)
|
|
|
|
output = output.transpose(0, 1)
|
|
|
|
return self.fc(output), memory
|
|
|
|
def expand_memory(self, memory, beam_size):
|
|
memory = memory.repeat(1, beam_size, 1)
|
|
return memory
|
|
|
|
def get_memory(self, memory, i):
|
|
memory = memory[:, [i], :]
|
|
return memory
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, dropout=0.1, max_len=100):
|
|
super(PositionalEncoding, self).__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
|
|
pe = torch.zeros(max_len, d_model)
|
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
|
pe[:, 0::2] = torch.sin(position * div_term)
|
|
pe[:, 1::2] = torch.cos(position * div_term)
|
|
pe = pe.unsqueeze(0).transpose(0, 1)
|
|
self.register_buffer('pe', pe)
|
|
|
|
def forward(self, x):
|
|
x = x + self.pe[:x.size(0), :]
|
|
|
|
return self.dropout(x)
|
|
|
|
class LearnedPositionalEncoding(nn.Module):
|
|
def __init__(self, d_model, dropout=0.1, max_len=100):
|
|
super(LearnedPositionalEncoding, self).__init__()
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
|
|
self.pos_embed = nn.Embedding(max_len, d_model)
|
|
self.layernorm = LayerNorm(d_model)
|
|
|
|
def forward(self, x):
|
|
seq_len = x.size(0)
|
|
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
|
pos = pos.unsqueeze(-1).expand(x.size()[:2])
|
|
x = x + self.pos_embed(pos)
|
|
return self.dropout(self.layernorm(x))
|
|
|
|
class LayerNorm(nn.Module):
|
|
"A layernorm module in the TF style (epsilon inside the square root)."
|
|
def __init__(self, d_model, variance_epsilon=1e-12):
|
|
super().__init__()
|
|
self.gamma = nn.Parameter(torch.ones(d_model))
|
|
self.beta = nn.Parameter(torch.zeros(d_model))
|
|
self.variance_epsilon = variance_epsilon
|
|
|
|
def forward(self, x):
|
|
u = x.mean(-1, keepdim=True)
|
|
s = (x - u).pow(2).mean(-1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
|
return self.gamma * x + self.beta
|
|
|