Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import math | |
from PIL import Image | |
from torch.nn.functional import softmax | |
def translate(img, model, max_seq_length=128, sos_token=1, eos_token=2): | |
"data: BxCXHxW" | |
model.eval() | |
with torch.no_grad(): | |
src = model.cnn(img) | |
memory = model.transformer.forward_encoder(src) | |
translated_sentence = [[sos_token]*len(img)] | |
max_length = 0 | |
while max_length <= max_seq_length and not all(np.any(np.asarray(translated_sentence).T==eos_token, axis=1)): | |
tgt_inp = torch.LongTensor(translated_sentence) | |
output, memory = model.transformer.forward_decoder(tgt_inp, memory) | |
output = softmax(output, dim=-1) | |
_, indices = torch.topk(output, 5) | |
indices = indices[:, -1, 0] | |
indices = indices.tolist() | |
translated_sentence.append(indices) | |
max_length += 1 | |
translated_sentence = np.asarray(translated_sentence).T | |
return translated_sentence | |
def resize(w, h, expected_height, image_min_width, image_max_width): | |
new_w = int(expected_height * float(w) / float(h)) | |
round_to = 10 | |
new_w = math.ceil(new_w/round_to)*round_to | |
new_w = max(new_w, image_min_width) | |
new_w = min(new_w, image_max_width) | |
return new_w, expected_height | |
def process_image(image, image_height, image_min_width, image_max_width): | |
img = image.convert('RGB') | |
w, h = img.size | |
new_w, image_height = resize(w, h, image_height, image_min_width, image_max_width) | |
img = img.resize((new_w, image_height), Image.Resampling.LANCZOS) | |
img = np.asarray(img).transpose(2,0, 1) | |
img = img/255 | |
return img | |
def process_input(image, image_height, image_min_width, image_max_width): | |
img = process_image(image, image_height, image_min_width, image_max_width) | |
img = img[np.newaxis, ...] | |
img = torch.FloatTensor(img) | |
return img | |