Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from collections import OrderedDict | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline | |
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_vae_checkpoint, convert_ldm_clip_checkpoint | |
def merge_delta_weights_into_unet(pipe, delta_weights): | |
unet_weights = pipe.unet.state_dict() | |
assert unet_weights.keys() == delta_weights.keys() | |
for key in delta_weights.keys(): | |
dtype = unet_weights[key].dtype | |
unet_weights[key] = unet_weights[key].to(dtype=delta_weights[key].dtype) + delta_weights[key].to(device=unet_weights[key].device) | |
unet_weights[key] = unet_weights[key].to(dtype) | |
pipe.unet.load_state_dict(unet_weights, strict=True) | |
return pipe | |
def load_delta_weights_into_unet( | |
pipe, | |
model_path = "hsyan/piecewise-rectified-flow-v0-1", | |
base_path = "runwayml/stable-diffusion-v1-5", | |
): | |
## load delta_weights | |
if os.path.exists(os.path.join(model_path, "delta_weights.safetensors")): | |
print("### delta_weights exists, loading...") | |
delta_weights = OrderedDict() | |
with safe_open(os.path.join(model_path, "delta_weights.safetensors"), framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
delta_weights[key] = f.get_tensor(key) | |
elif os.path.exists(os.path.join(model_path, "diffusion_pytorch_model.safetensors")): | |
print("### merged_weights exists, loading...") | |
merged_weights = OrderedDict() | |
with safe_open(os.path.join(model_path, "diffusion_pytorch_model.safetensors"), framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
merged_weights[key] = f.get_tensor(key) | |
base_weights = StableDiffusionPipeline.from_pretrained( | |
base_path, torch_dtype=torch.float16, safety_checker=None).unet.state_dict() | |
assert base_weights.keys() == merged_weights.keys() | |
delta_weights = OrderedDict() | |
for key in merged_weights.keys(): | |
delta_weights[key] = merged_weights[key] - base_weights[key].to(device=merged_weights[key].device, dtype=merged_weights[key].dtype) | |
print("### saving delta_weights...") | |
save_file(delta_weights, os.path.join(model_path, "delta_weights.safetensors")) | |
else: | |
raise ValueError(f"{model_path} does not contain delta weights or merged weights") | |
## merge delta_weights to the target pipeline | |
pipe = merge_delta_weights_into_unet(pipe, delta_weights) | |
return pipe | |
def load_dreambooth_into_pipeline(pipe, sd_dreambooth): | |
assert sd_dreambooth.endswith(".safetensors") | |
state_dict = {} | |
with safe_open(sd_dreambooth, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
unet_config = {} # unet, line 449 in convert_ldm_unet_checkpoint | |
for key in pipe.unet.config.keys(): | |
if key != 'num_class_embeds': | |
unet_config[key] = pipe.unet.config[key] | |
pipe.unet.load_state_dict(convert_ldm_unet_checkpoint(state_dict, unet_config), strict=False) | |
pipe.vae.load_state_dict(convert_ldm_vae_checkpoint(state_dict, pipe.vae.config)) | |
pipe.text_encoder = convert_ldm_clip_checkpoint(state_dict, text_encoder=pipe.text_encoder) | |
return pipe |