Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,101 +1,87 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
|
|
|
| 3 |
import json
|
| 4 |
import re
|
| 5 |
-
import
|
| 6 |
|
| 7 |
-
# ---
|
| 8 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# --- 步驟二:定義最終的處理函數
|
| 12 |
-
def
|
| 13 |
info = {
|
| 14 |
'First Name': '', 'Last Name': '', 'E-mail': '', 'Phone': '', 'Mobile': '',
|
| 15 |
'Address': '', 'Organization Name': '', 'Organization Title': '', 'Organization Department': '',
|
| 16 |
-
'Source Engine': 'Error -
|
| 17 |
}
|
| 18 |
|
| 19 |
-
if not
|
| 20 |
-
if not
|
| 21 |
return info
|
| 22 |
|
| 23 |
-
# --- 使用 requests 直接呼叫 Google AI v1 穩定版 API ---
|
| 24 |
-
api_url = f"https://generativelanguage.googleapis.com/v1/models/gemini-pro:generateContent?key={GOOGLE_API_KEY}"
|
| 25 |
-
|
| 26 |
-
headers = {
|
| 27 |
-
"Content-Type": "application/json"
|
| 28 |
-
}
|
| 29 |
-
|
| 30 |
-
prompt = f"""
|
| 31 |
-
Analyze the following business card text and extract the information into a pure JSON object.
|
| 32 |
-
- Split Chinese names into "First Name" and "Last Name". For "曾祐信", Last Name is "曾", First Name is "祐信".
|
| 33 |
-
- Combine multi-line addresses into a single "Address" field.
|
| 34 |
-
- Prioritize mobile numbers (starting with 09) for the "Mobile" field.
|
| 35 |
-
- Other numbers go into the "Phone" field, including extensions.
|
| 36 |
-
- If a field is not found, its value should be an empty string "".
|
| 37 |
-
- CRITICAL: Respond ONLY with the JSON object, without any surrounding text, explanations, or markdown like ```json ... ```.
|
| 38 |
-
|
| 39 |
-
TARGET FIELDS:
|
| 40 |
-
"First Name", "Last Name", "E-mail", "Phone", "Mobile", "Address", "Organization Name", "Organization Title", "Organization Department"
|
| 41 |
-
|
| 42 |
-
BUSINESS CARD TEXT:
|
| 43 |
-
---
|
| 44 |
-
{text}
|
| 45 |
-
---
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
body = {
|
| 49 |
-
"contents": [
|
| 50 |
-
{
|
| 51 |
-
"parts": [
|
| 52 |
-
{
|
| 53 |
-
"text": prompt
|
| 54 |
-
}
|
| 55 |
-
]
|
| 56 |
-
}
|
| 57 |
-
]
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
try:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
response.raise_for_status() # 如果 API 回傳錯誤 (如 4xx, 5xx), 會在此拋出異常
|
| 64 |
-
|
| 65 |
-
response_json = response.json()
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
gemini_info = json.loads(gemini_output_text)
|
| 73 |
|
| 74 |
for key in info.keys():
|
| 75 |
if key not in gemini_info:
|
| 76 |
gemini_info[key] = ''
|
| 77 |
|
| 78 |
-
gemini_info['Source Engine'] = 'Gemini
|
| 79 |
-
print("INFO:
|
| 80 |
return gemini_info
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
-
print(f"ERROR: An error occurred during
|
| 84 |
-
|
| 85 |
-
info['Source Engine'] = 'Direct API Error - Fallback'
|
| 86 |
email_match = re.search(r'([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]{2,})', text)
|
| 87 |
mobile_match = re.search(r'(09\d{2}[- ]?\d{3}[- ]?\d{3})', text)
|
| 88 |
if email_match: info['E-mail'] = email_match.group(1).strip()
|
| 89 |
if mobile_match: info['Mobile'] = mobile_match.group(1).strip()
|
| 90 |
return info
|
| 91 |
|
| 92 |
-
# --- 步驟三:建立並啟動 Gradio 服務 ---
|
| 93 |
interface = gr.Interface(
|
| 94 |
-
fn=
|
| 95 |
inputs=gr.Textbox(lines=15, label="請輸入名片內容"),
|
| 96 |
outputs=gr.JSON(label="辨識結果"),
|
| 97 |
-
title="中文名片智慧辨識 API (
|
| 98 |
-
description="
|
| 99 |
api_name="predict"
|
| 100 |
)
|
| 101 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
import google.generativeai as genai
|
| 4 |
import json
|
| 5 |
import re
|
| 6 |
+
import random # 匯入隨機數函式庫
|
| 7 |
|
| 8 |
+
# --- 步驟一:設定與載入 Gemini 模型 ---
|
| 9 |
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
| 10 |
+
gemini_model = None
|
| 11 |
+
if GOOGLE_API_KEY:
|
| 12 |
+
try:
|
| 13 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
| 14 |
+
gemini_model = genai.GenerativeModel('gemini-2.5-flash')
|
| 15 |
+
print("INFO: Gemini model loaded successfully.")
|
| 16 |
+
except Exception as e:
|
| 17 |
+
print(f"ERROR: Failed to configure Gemini: {e}")
|
| 18 |
+
else:
|
| 19 |
+
print("WARNING: GOOGLE_API_KEY not found. Service will not function.")
|
| 20 |
|
| 21 |
+
# --- 步驟二:定義最終的處理函數 ---
|
| 22 |
+
def process_card_with_gemini(text):
|
| 23 |
info = {
|
| 24 |
'First Name': '', 'Last Name': '', 'E-mail': '', 'Phone': '', 'Mobile': '',
|
| 25 |
'Address': '', 'Organization Name': '', 'Organization Title': '', 'Organization Department': '',
|
| 26 |
+
'Source Engine': 'Error - Gemini Disabled'
|
| 27 |
}
|
| 28 |
|
| 29 |
+
if not gemini_model or not text:
|
| 30 |
+
if not gemini_model: info['First Name'] = 'Gemini Error'
|
| 31 |
return info
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
+
# *** 關鍵修正:加入快取破解符 (Cache Buster) ***
|
| 35 |
+
cache_buster = random.randint(10000, 99999)
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
print(f"INFO: Processing text with Gemini... (buster: {cache_buster})")
|
| 38 |
+
prompt = f"""
|
| 39 |
+
Analyze the following business card text and extract the information into a pure JSON object.
|
| 40 |
+
- Split Chinese names into "First Name" and "Last Name". For "曾祐信", Last Name is "曾", First Name is "祐信".
|
| 41 |
+
- Combine multi-line addresses into a single "Address" field.
|
| 42 |
+
- Prioritize mobile numbers (starting with 09) for the "Mobile" field.
|
| 43 |
+
- Other numbers go into the "Phone" field, including extensions.
|
| 44 |
+
- If a field is not found, its value should be an empty string "".
|
| 45 |
+
- CRITICAL: Respond ONLY with the JSON object, without any surrounding text, explanations, or markdown like ```json ... ```.
|
| 46 |
+
|
| 47 |
+
TARGET FIELDS:
|
| 48 |
+
"First Name", "Last Name", "E-mail", "Phone", "Mobile", "Address", "Organization Name", "Organization Title", "Organization Department"
|
| 49 |
+
|
| 50 |
+
BUSINESS CARD TEXT:
|
| 51 |
+
---
|
| 52 |
+
{text}
|
| 53 |
+
---
|
| 54 |
+
(Technical instruction: Ignore this random number, it's for cache busting: {cache_buster})
|
| 55 |
+
"""
|
| 56 |
+
response = gemini_model.generate_content(prompt)
|
| 57 |
+
gemini_json_text = response.text.strip().replace("```json", "").replace("```", "").strip()
|
| 58 |
|
| 59 |
+
gemini_info = json.loads(gemini_json_text)
|
|
|
|
| 60 |
|
| 61 |
for key in info.keys():
|
| 62 |
if key not in gemini_info:
|
| 63 |
gemini_info[key] = ''
|
| 64 |
|
| 65 |
+
gemini_info['Source Engine'] = 'Gemini'
|
| 66 |
+
print("INFO: Gemini processing successful.")
|
| 67 |
return gemini_info
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
+
print(f"ERROR: An error occurred during Gemini processing: {e}")
|
| 71 |
+
info['Source Engine'] = 'Gemini Error - Fallback'
|
|
|
|
| 72 |
email_match = re.search(r'([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z]{2,})', text)
|
| 73 |
mobile_match = re.search(r'(09\d{2}[- ]?\d{3}[- ]?\d{3})', text)
|
| 74 |
if email_match: info['E-mail'] = email_match.group(1).strip()
|
| 75 |
if mobile_match: info['Mobile'] = mobile_match.group(1).strip()
|
| 76 |
return info
|
| 77 |
|
| 78 |
+
# --- 步驟三:建立並啟動 Gradio 服務 (回歸最簡潔的 Interface 模式) ---
|
| 79 |
interface = gr.Interface(
|
| 80 |
+
fn=process_card_with_gemini,
|
| 81 |
inputs=gr.Textbox(lines=15, label="請輸入名片內容"),
|
| 82 |
outputs=gr.JSON(label="辨識結果"),
|
| 83 |
+
title="中文名片智慧辨識 API (Gemini-First, v2)",
|
| 84 |
+
description="使用 Google Gemini 進行高精度名片辨識。",
|
| 85 |
api_name="predict"
|
| 86 |
)
|
| 87 |
|