Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Change to local inference
Browse files- activations/candidate_vectors.pt +3 -0
- activations/deepseek-1.5b-candidate_vectors.pt +3 -0
- activations/deepseek-1.5b-offsets.pt +3 -0
- activations/offsets.pt +3 -0
- app.py +52 -143
- model.py +110 -0
- requirements.txt +8 -0
- scheduler.py +1 -1
- schemas.py +4 -11
    	
        activations/candidate_vectors.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ed63186d01ddaf6df8835818144185b5fb05d1c9a4683fce9517a921472353b3
         | 
| 3 | 
            +
            size 804046
         | 
    	
        activations/deepseek-1.5b-candidate_vectors.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4a4f3701085a9090e78fc402aaaef5adbf23f0b49c932f82eb4fc107d191aac0
         | 
| 3 | 
            +
            size 345294
         | 
    	
        activations/deepseek-1.5b-offsets.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d84cb880bee5feb83248b476d8d0f3f87dca74bc8ae53807f3ab2a9bdb959920
         | 
| 3 | 
            +
            size 345244
         | 
    	
        activations/offsets.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c6cb10bd9014f9cd2470d37f56f491abd5f72bd162543a7569f40cd385f127c3
         | 
| 3 | 
            +
            size 803996
         | 
    	
        app.py
    CHANGED
    
    | @@ -1,35 +1,25 @@ | |
| 1 | 
            -
            import  | 
| 2 | 
             
            import logging
         | 
| 3 | 
             
            from pathlib import Path
         | 
| 4 | 
            -
            import  | 
| 5 | 
            -
            import  | 
| 6 | 
             
            import pandas as pd
         | 
| 7 | 
             
            import gradio as gr
         | 
| 8 | 
             
            from gradio_toggle import Toggle
         | 
|  | |
|  | |
| 9 | 
             
            from scheduler import load_scheduler
         | 
| 10 | 
             
            from schemas import UserRequest, SteeringOutput, CONFIG
         | 
| 11 |  | 
| 12 | 
            -
             | 
| 13 | 
            -
            MAX_RETRIES = 10
         | 
| 14 | 
            -
            MAX_RETRY_WAIT_TIME = 75
         | 
| 15 | 
            -
            MIN_RETRY_WAIT_TIME = 5
         | 
| 16 | 
            -
            ENDPOINT_ALIVE = False
         | 
| 17 | 
            -
             | 
| 18 | 
            -
            HF_TOKEN = os.getenv('HF_TOKEN')
         | 
| 19 | 
            -
            API_URL = "https://a6k5m81qw14hkvhz.us-east-1.aws.endpoints.huggingface.cloud"
         | 
| 20 | 
            -
            headers = {
         | 
| 21 | 
            -
                "Accept" : "application/json",
         | 
| 22 | 
            -
                "Authorization": f"Bearer {HF_TOKEN}",
         | 
| 23 | 
            -
                "Content-Type": "application/json" 
         | 
| 24 | 
            -
            }
         | 
| 25 | 
            -
             | 
| 26 | 
             
            logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
         | 
| 27 | 
             
            logger = logging.getLogger(__name__)
         | 
| 28 |  | 
| 29 | 
             
            model_name = "DeepSeek-R1-Distill-Qwen-7B"
         | 
| 30 | 
             
            examples = pd.read_csv("assets/examples.csv")
         | 
|  | |
| 31 | 
             
            instances = {}
         | 
| 32 | 
             
            scheduler = load_scheduler()
         | 
|  | |
| 33 |  | 
| 34 |  | 
| 35 | 
             
            HEAD = """
         | 
| @@ -198,8 +188,6 @@ def initialize_instance(request: gr.Request): | |
| 198 |  | 
| 199 |  | 
| 200 | 
             
            def cleanup_instance(request: gr.Request):
         | 
| 201 | 
            -
                global ENDPOINT_ALIVE
         | 
| 202 | 
            -
             | 
| 203 | 
             
                session_id = request.session_hash
         | 
| 204 |  | 
| 205 | 
             
                if session_id in instances:
         | 
| @@ -209,51 +197,48 @@ def cleanup_instance(request: gr.Request): | |
| 209 |  | 
| 210 | 
             
                    del instances[session_id]
         | 
| 211 |  | 
| 212 | 
            -
                if len(instances) == 0:
         | 
| 213 | 
            -
                    ENDPOINT_ALIVE = False
         | 
| 214 | 
            -
             | 
| 215 | 
             
                logger.info("Number of connections: %d", len(instances))
         | 
| 216 |  | 
| 217 |  | 
| 218 | 
            -
             | 
| 219 | 
            -
             | 
| 220 | 
            -
                 | 
| 221 | 
            -
                 | 
| 222 | 
            -
                    resp_text = await resp.text()
         | 
| 223 | 
            -
                    if resp.status == 200:
         | 
| 224 | 
            -
                        alive = True
         | 
| 225 | 
            -
                    else:
         | 
| 226 | 
            -
                        logger.error("API Error Code: %d, Message: %s", resp.status, resp_text)
         | 
| 227 | 
            -
                
         | 
| 228 | 
            -
                await session.close()
         | 
| 229 | 
            -
                return alive
         | 
| 230 |  | 
|  | |
| 231 |  | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
                 | 
| 238 | 
            -
                     | 
|  | |
|  | |
|  | |
| 239 |  | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 244 |  | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
                        gr.Info("Inference endpoint is ready")
         | 
| 248 | 
            -
                        yield "Ready"
         | 
| 249 | 
            -
                        break
         | 
| 250 | 
            -
                    
         | 
| 251 | 
            -
                    gr.Warning("Initializing inference endpoint\n(This may take 2~3 minutes)", duration=sleep_time)
         | 
| 252 | 
            -
                    await asyncio.sleep(sleep_time)
         | 
| 253 | 
            -
                    sleep_time = max(sleep_time * 0.8, MIN_RETRY_WAIT_TIME)
         | 
| 254 |  | 
| 255 | 
            -
                 | 
| 256 | 
            -
                    yield "Server Error"
         | 
| 257 |  | 
| 258 |  | 
| 259 | 
             
            async def post_process(session_id, output):
         | 
| @@ -266,62 +251,11 @@ async def post_process(session_id, output): | |
| 266 | 
             
                        answer = None
         | 
| 267 | 
             
                    else:
         | 
| 268 | 
             
                        answer = p[-1]
         | 
| 269 | 
            -
                else:
         | 
| 270 | 
            -
                    answer = None
         | 
| 271 | 
            -
                    reasoning = output
         | 
| 272 | 
            -
             | 
| 273 | 
            -
                steering_output = SteeringOutput(**req.model_dump(), reasoning=reasoning, answer=answer)
         | 
| 274 | 
            -
                instances[session_id].append(steering_output)
         | 
| 275 | 
            -
             | 
| 276 | 
            -
             | 
| 277 | 
            -
            class Generator:
         | 
| 278 | 
            -
                def __init__(self):
         | 
| 279 | 
            -
                    self.stop_events = {}
         | 
| 280 | 
            -
             | 
| 281 | 
            -
                async def stop(self, session_id):
         | 
| 282 | 
            -
                    self.stop_events[session_id] = True
         | 
| 283 | 
            -
                    logger.info("Stopping generation")
         | 
| 284 | 
            -
             | 
| 285 | 
            -
                async def generate(
         | 
| 286 | 
            -
                    self, session_id: str, prompt: str, steering: bool, coeff: float, 
         | 
| 287 | 
            -
                    max_new_tokens: int, top_p: float, temperature: float, layer: int, vec_scaling: float
         | 
| 288 | 
            -
                ):
         | 
| 289 | 
            -
                    req = UserRequest(
         | 
| 290 | 
            -
                        session_id=session_id, prompt=prompt, steering=steering, coeff=coeff,
         | 
| 291 | 
            -
                        max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, vec_scale=vec_scaling, layer=layer
         | 
| 292 | 
            -
                    )
         | 
| 293 | 
            -
             | 
| 294 | 
            -
                    instances[session_id].append(req)
         | 
| 295 | 
            -
             | 
| 296 | 
            -
                    data = req.get_api_format()
         | 
| 297 | 
            -
                    logger.info("User Request: %s", data)
         | 
| 298 | 
            -
             | 
| 299 | 
            -
                    generated_text = ""
         | 
| 300 | 
            -
                    self.stop_events[session_id] = False
         | 
| 301 | 
            -
             | 
| 302 | 
            -
                    try:
         | 
| 303 | 
            -
                        async with aiohttp.ClientSession() as session:
         | 
| 304 | 
            -
                            async with session.post(f"{API_URL}/generate", headers=headers, json=data) as resp:
         | 
| 305 | 
            -
                                if resp.status == 200:
         | 
| 306 | 
            -
                                    generated_text += "<think>"
         | 
| 307 | 
            -
             | 
| 308 | 
            -
                                    async for chunk, _ in resp.content.iter_chunks():
         | 
| 309 | 
            -
                                        if self.stop_events[session_id]:
         | 
| 310 | 
            -
                                            break
         | 
| 311 |  | 
| 312 | 
            -
             | 
| 313 | 
            -
             | 
| 314 | 
            -
                                else:
         | 
| 315 | 
            -
                                    logger.error("API Error Ccode: %d, Error Message: %s", resp.status, resp.text())
         | 
| 316 | 
            -
                                    raise gr.Error("API Server Error")
         | 
| 317 | 
            -
                                
         | 
| 318 | 
            -
                    except:
         | 
| 319 | 
            -
                        logger.info("Client session error")
         | 
| 320 |  | 
| 321 | 
            -
             | 
| 322 | 
            -
                        await post_process(session_id, generated_text)
         | 
| 323 | 
            -
             | 
| 324 | 
            -
                    del self.stop_events[session_id]
         | 
| 325 |  | 
| 326 |  | 
| 327 | 
             
            async def output_feedback(session_id, feedback):
         | 
| @@ -339,31 +273,13 @@ async def output_feedback(session_id, feedback): | |
| 339 | 
             
                    logger.debug("Feedback submission error")
         | 
| 340 |  | 
| 341 |  | 
| 342 | 
            -
            async def show_feedback_buttons(upvote_btn, downvote_btn):
         | 
| 343 | 
            -
                return gr.update(interactive=True), gr.update(interactive=True)
         | 
| 344 | 
            -
             | 
| 345 | 
            -
             | 
| 346 | 
             
            gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
         | 
| 347 | 
             
            theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set()
         | 
| 348 | 
            -
            generator = Generator()
         | 
| 349 |  | 
| 350 | 
             
            with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo:
         | 
| 351 | 
             
                session_id = gr.State()
         | 
| 352 | 
            -
                endpoint_state = gr.State(get_endpoint_state)
         | 
| 353 | 
            -
             | 
| 354 | 
             
                gr.HTML(HTML)
         | 
| 355 | 
            -
             | 
| 356 | 
            -
                @gr.render(inputs=endpoint_state, triggers=[endpoint_state.change])
         | 
| 357 | 
            -
                def render_state(endpoint_state):
         | 
| 358 | 
            -
                    if endpoint_state == "Ready":
         | 
| 359 | 
            -
                        color = "green"
         | 
| 360 | 
            -
                    elif endpoint_state == "Server Error":
         | 
| 361 | 
            -
                        color = "red"
         | 
| 362 | 
            -
                    else:
         | 
| 363 | 
            -
                        color = "orange"
         | 
| 364 | 
            -
             | 
| 365 | 
            -
                    if endpoint_state != None:
         | 
| 366 | 
            -
                        gr.Markdown(f'🤖 {model_name} | Inference Endpoint State: <span style="color:{color}; font-weight: bold;">{endpoint_state}</span>', elem_id="model-state")
         | 
| 367 |  | 
| 368 | 
             
                with gr.Row(elem_id="main-components"):
         | 
| 369 | 
             
                    with gr.Column(scale=1):
         | 
| @@ -382,7 +298,6 @@ with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, | |
| 382 |  | 
| 383 | 
             
                        with gr.Row():
         | 
| 384 | 
             
                            clear_btn = gr.ClearButton()
         | 
| 385 | 
            -
                            stop_btn = gr.Button("Stop")
         | 
| 386 | 
             
                            generate_btn = gr.Button("Generate", variant="primary")
         | 
| 387 |  | 
| 388 | 
             
                        with gr.Accordion("⚙️ Advanced Settings", open=False):
         | 
| @@ -408,25 +323,19 @@ with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, | |
| 408 | 
             
                gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful")
         | 
| 409 |  | 
| 410 |  | 
| 411 | 
            -
                @gr.on(triggers=[clear_btn.click | 
| 412 | 
            -
                def  | 
| 413 | 
             
                    return gr.update(interactive=False), gr.update(interactive=False)
         | 
| 414 | 
            -
                
         | 
| 415 | 
            -
                @gr.on(triggers=[generate_btn.click], outputs=[upvote_btn, downvote_btn])
         | 
| 416 | 
            -
                def show_feedback_buttons():
         | 
| 417 | 
            -
                    return gr.update(interactive=True), gr.update(interactive=True)
         | 
| 418 | 
            -
             | 
| 419 | 
            -
             | 
| 420 | 
            -
                submission = generate_btn.click(
         | 
| 421 | 
            -
                    generator.generate, inputs=[session_id, input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature, layer, vec_scaling], outputs=output
         | 
| 422 | 
            -
                )
         | 
| 423 |  | 
| 424 | 
             
                clear_btn.add([input_text, output])
         | 
| 425 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
| 426 |  | 
| 427 | 
             
                upvote_btn.click(output_feedback, inputs=[session_id, upvote_btn])
         | 
| 428 | 
             
                downvote_btn.click(output_feedback, inputs=[session_id, downvote_btn])
         | 
| 429 | 
            -
             | 
| 430 | 
             
                layer.change(fn=lambda x: 1, inputs=vec_scaling, outputs=vec_scaling)
         | 
| 431 |  | 
| 432 | 
             
                demo.load(initialize_instance, outputs=session_id)
         | 
|  | |
| 1 | 
            +
            import threading
         | 
| 2 | 
             
            import logging
         | 
| 3 | 
             
            from pathlib import Path
         | 
| 4 | 
            +
            from typing import Dict
         | 
| 5 | 
            +
            import spaces
         | 
| 6 | 
             
            import pandas as pd
         | 
| 7 | 
             
            import gradio as gr
         | 
| 8 | 
             
            from gradio_toggle import Toggle
         | 
| 9 | 
            +
            from transformers import TextIteratorStreamer
         | 
| 10 | 
            +
            from model import load_model
         | 
| 11 | 
             
            from scheduler import load_scheduler
         | 
| 12 | 
             
            from schemas import UserRequest, SteeringOutput, CONFIG
         | 
| 13 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
         | 
| 15 | 
             
            logger = logging.getLogger(__name__)
         | 
| 16 |  | 
| 17 | 
             
            model_name = "DeepSeek-R1-Distill-Qwen-7B"
         | 
| 18 | 
             
            examples = pd.read_csv("assets/examples.csv")
         | 
| 19 | 
            +
             | 
| 20 | 
             
            instances = {}
         | 
| 21 | 
             
            scheduler = load_scheduler()
         | 
| 22 | 
            +
            model = load_model()
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
             
            HEAD = """
         | 
|  | |
| 188 |  | 
| 189 |  | 
| 190 | 
             
            def cleanup_instance(request: gr.Request):
         | 
|  | |
|  | |
| 191 | 
             
                session_id = request.session_hash
         | 
| 192 |  | 
| 193 | 
             
                if session_id in instances:
         | 
|  | |
| 197 |  | 
| 198 | 
             
                    del instances[session_id]
         | 
| 199 |  | 
|  | |
|  | |
|  | |
| 200 | 
             
                logger.info("Number of connections: %d", len(instances))
         | 
| 201 |  | 
| 202 |  | 
| 203 | 
            +
            @spaces.GPU(duration=90)
         | 
| 204 | 
            +
            def generate(prompt: str, steering: bool, coeff: float, generation_config: Dict[str, float], layer: int, k: float):
         | 
| 205 | 
            +
                formatted_prompt = model.apply_chat_template(prompt)
         | 
| 206 | 
            +
                inputs = model.tokenize(formatted_prompt)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 207 |  | 
| 208 | 
            +
                streamer = TextIteratorStreamer(model.tokenizer, timeout=10, skip_prompt=True, skip_special_tokens=True)
         | 
| 209 |  | 
| 210 | 
            +
                if steering:
         | 
| 211 | 
            +
                    thread = threading.Thread(
         | 
| 212 | 
            +
                        target=model.steer_generation,
         | 
| 213 | 
            +
                        args=(inputs, streamer, k, layer, coeff, generation_config)
         | 
| 214 | 
            +
                    )
         | 
| 215 | 
            +
                else:
         | 
| 216 | 
            +
                    thread = threading.Thread(
         | 
| 217 | 
            +
                        target=model.run_generation,
         | 
| 218 | 
            +
                        args=(inputs, streamer, generation_config)
         | 
| 219 | 
            +
                    )
         | 
| 220 |  | 
| 221 | 
            +
                thread.start()
         | 
| 222 | 
            +
                
         | 
| 223 | 
            +
                generated_text = "<think>"
         | 
| 224 | 
            +
                for new_text in streamer:
         | 
| 225 | 
            +
                    generated_text += new_text
         | 
| 226 | 
            +
                    yield generated_text
         | 
| 227 | 
            +
             | 
| 228 | 
            +
             | 
| 229 | 
            +
            def generate_output(
         | 
| 230 | 
            +
                session_id: str, prompt: str, steering: bool, coeff: float, 
         | 
| 231 | 
            +
                max_new_tokens: int, top_p: float, temperature: float, layer: int, vec_scaling: float
         | 
| 232 | 
            +
            ):
         | 
| 233 | 
            +
                req = UserRequest(
         | 
| 234 | 
            +
                    session_id=session_id, prompt=prompt, steering=steering, coeff=coeff,
         | 
| 235 | 
            +
                    max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, vec_scale=vec_scaling, layer=layer
         | 
| 236 | 
            +
                )
         | 
| 237 |  | 
| 238 | 
            +
                logger.info("User request: %s", req)
         | 
| 239 | 
            +
                instances[session_id].append(req)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 240 |  | 
| 241 | 
            +
                yield from generate(prompt, steering, coeff, req.generation_config(), layer, req.k)
         | 
|  | |
| 242 |  | 
| 243 |  | 
| 244 | 
             
            async def post_process(session_id, output):
         | 
|  | |
| 251 | 
             
                        answer = None
         | 
| 252 | 
             
                    else:
         | 
| 253 | 
             
                        answer = p[-1]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 254 |  | 
| 255 | 
            +
                    steering_output = SteeringOutput(**req.model_dump(), reasoning=reasoning, answer=answer)
         | 
| 256 | 
            +
                    instances[session_id].append(steering_output)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 257 |  | 
| 258 | 
            +
                return gr.update(interactive=True), gr.update(interactive=True)
         | 
|  | |
|  | |
|  | |
| 259 |  | 
| 260 |  | 
| 261 | 
             
            async def output_feedback(session_id, feedback):
         | 
|  | |
| 273 | 
             
                    logger.debug("Feedback submission error")
         | 
| 274 |  | 
| 275 |  | 
|  | |
|  | |
|  | |
|  | |
| 276 | 
             
            gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"])
         | 
| 277 | 
             
            theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set()
         | 
|  | |
| 278 |  | 
| 279 | 
             
            with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo:
         | 
| 280 | 
             
                session_id = gr.State()
         | 
|  | |
|  | |
| 281 | 
             
                gr.HTML(HTML)
         | 
| 282 | 
            +
                gr.Markdown(f'🤖 {model_name}')
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 283 |  | 
| 284 | 
             
                with gr.Row(elem_id="main-components"):
         | 
| 285 | 
             
                    with gr.Column(scale=1):
         | 
|  | |
| 298 |  | 
| 299 | 
             
                        with gr.Row():
         | 
| 300 | 
             
                            clear_btn = gr.ClearButton()
         | 
|  | |
| 301 | 
             
                            generate_btn = gr.Button("Generate", variant="primary")
         | 
| 302 |  | 
| 303 | 
             
                        with gr.Accordion("⚙️ Advanced Settings", open=False):
         | 
|  | |
| 323 | 
             
                gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful")
         | 
| 324 |  | 
| 325 |  | 
| 326 | 
            +
                @gr.on(triggers=[clear_btn.click], outputs=[upvote_btn, downvote_btn])
         | 
| 327 | 
            +
                def clear():
         | 
| 328 | 
             
                    return gr.update(interactive=False), gr.update(interactive=False)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 329 |  | 
| 330 | 
             
                clear_btn.add([input_text, output])
         | 
| 331 | 
            +
                generate_btn.click(
         | 
| 332 | 
            +
                    generate_output, inputs=[session_id, input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature, layer, vec_scaling], outputs=output
         | 
| 333 | 
            +
                ).success(
         | 
| 334 | 
            +
                    post_process, inputs=[session_id, output], outputs=[upvote_btn, downvote_btn]
         | 
| 335 | 
            +
                )
         | 
| 336 |  | 
| 337 | 
             
                upvote_btn.click(output_feedback, inputs=[session_id, upvote_btn])
         | 
| 338 | 
             
                downvote_btn.click(output_feedback, inputs=[session_id, downvote_btn])
         | 
|  | |
| 339 | 
             
                layer.change(fn=lambda x: 1, inputs=vec_scaling, outputs=vec_scaling)
         | 
| 340 |  | 
| 341 | 
             
                demo.load(initialize_instance, outputs=session_id)
         | 
    	
        model.py
    ADDED
    
    | @@ -0,0 +1,110 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os, warnings
         | 
| 2 | 
            +
            from operator import attrgetter
         | 
| 3 | 
            +
            from typing import List, Dict
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import torch.nn.functional as F
         | 
| 7 | 
            +
            from torchtyping import TensorType
         | 
| 8 | 
            +
            from transformers import TextIteratorStreamer
         | 
| 9 | 
            +
            from transformers import AutoTokenizer, BatchEncoding
         | 
| 10 | 
            +
            import nnsight
         | 
| 11 | 
            +
            from nnsight import LanguageModel
         | 
| 12 | 
            +
            from nnsight.intervention import Envoy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            warnings.filterwarnings("ignore")
         | 
| 15 | 
            +
            os.environ["TOKENIZERS_PARALLELISM"] = "false"
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # nnsight with multi-threading: https://github.com/ndif-team/nnsight/issues/280
         | 
| 18 | 
            +
            nnsight.CONFIG.APP.GLOBAL_TRACING = False
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            config = {
         | 
| 21 | 
            +
                "model_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
         | 
| 22 | 
            +
                "steering_vec": "activations/candidate_vectors.pt",
         | 
| 23 | 
            +
                "offset": "activations/offsets.pt",
         | 
| 24 | 
            +
            }
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            def detect_module_attrs(model: LanguageModel) -> str:
         | 
| 27 | 
            +
                if "model" in model._modules and "layers" in model.model._modules:
         | 
| 28 | 
            +
                    return "model.layers"
         | 
| 29 | 
            +
                elif "transformers" in model._modules and "h" in model.transformers._modules:
         | 
| 30 | 
            +
                    return "transformers.h"
         | 
| 31 | 
            +
                else:
         | 
| 32 | 
            +
                    raise Exception("Failed to detect module attributes.")
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class ModelBase:
         | 
| 36 | 
            +
                def __init__(
         | 
| 37 | 
            +
                    self, model_name: str,
         | 
| 38 | 
            +
                    steering_vecs: TensorType, offsets: TensorType,
         | 
| 39 | 
            +
                    tokenizer: AutoTokenizer = None, block_module_attr=None
         | 
| 40 | 
            +
                ):
         | 
| 41 | 
            +
                    if tokenizer is None:
         | 
| 42 | 
            +
                        self.tokenizer = self._load_tokenizer(model_name)
         | 
| 43 | 
            +
                    else:
         | 
| 44 | 
            +
                        self.tokenizer = tokenizer
         | 
| 45 | 
            +
                    self.model = self._load_model(model_name, self.tokenizer)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    self.device = self.model.device
         | 
| 48 | 
            +
                    self.hidden_size = self.model.config.hidden_size
         | 
| 49 | 
            +
                    if block_module_attr is None:
         | 
| 50 | 
            +
                        self.block_modules = self.get_module(detect_module_attrs(self.model))
         | 
| 51 | 
            +
                    else:
         | 
| 52 | 
            +
                        self.block_modules = self.get_module(block_module_attr)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    self.steering_vecs = F.normalize(steering_vecs, dim=-1)
         | 
| 55 | 
            +
                    self.steering_vecs, self.offsets = self.set_dtype(self.steering_vecs, offsets)
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
                def _load_model(self, model_name: str, tokenizer: AutoTokenizer) -> LanguageModel:
         | 
| 58 | 
            +
                    return LanguageModel(model_name, tokenizer=tokenizer, dispatch=True, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                def _load_tokenizer(self, model_name) -> AutoTokenizer:
         | 
| 61 | 
            +
                    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
         | 
| 62 | 
            +
                    tokenizer.padding_side = "left"
         | 
| 63 | 
            +
                    if not tokenizer.pad_token:
         | 
| 64 | 
            +
                        tokenizer.pad_token_id = tokenizer.eos_token_id
         | 
| 65 | 
            +
                        tokenizer.pad_token = tokenizer.eos_token
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    tokenizer.chat_template = tokenizer.chat_template.replace("<|Assistant|><think>\\n", "<|Assistant|><think>")
         | 
| 68 | 
            +
                    return tokenizer
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def tokenize(self, prompt: str) -> BatchEncoding:
         | 
| 71 | 
            +
                    return self.tokenizer(prompt, padding=True, truncation=False, return_tensors="pt")
         | 
| 72 | 
            +
                
         | 
| 73 | 
            +
                def get_module(self, attr: str) -> Envoy:
         | 
| 74 | 
            +
                    return attrgetter(attr)(self.model)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                def set_dtype(self, *vars):
         | 
| 77 | 
            +
                    if len(vars) == 1:
         | 
| 78 | 
            +
                        return vars[0].to(self.model.dtype)
         | 
| 79 | 
            +
                    else:
         | 
| 80 | 
            +
                        return (var.to(self.model.dtype) for var in vars)
         | 
| 81 | 
            +
                
         | 
| 82 | 
            +
                def apply_chat_template(self, instruction: str) -> List[str]:
         | 
| 83 | 
            +
                    messages = [{"role": "user", "content": instruction}]
         | 
| 84 | 
            +
                    return self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def run_generation(self, inputs, streamer: TextIteratorStreamer, generation_config: Dict):
         | 
| 87 | 
            +
                    inputs = inputs.to(self.device)
         | 
| 88 | 
            +
                    _ = self.model._model.generate(**inputs, do_sample=True, streamer=streamer, **generation_config)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def steer_generation(
         | 
| 91 | 
            +
                    self, inputs, streamer: TextIteratorStreamer, k: float, 
         | 
| 92 | 
            +
                    layer: int, coeff: float, generation_config: Dict
         | 
| 93 | 
            +
                ):
         | 
| 94 | 
            +
                    layer_block = self.block_modules[layer]
         | 
| 95 | 
            +
                    unit_vec = self.steering_vecs[layer]
         | 
| 96 | 
            +
                    offset = self.offsets[layer]
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                    with self.model.generate(inputs, do_sample=True, streamer=streamer, **generation_config):
         | 
| 99 | 
            +
                        with self.block_modules.all():
         | 
| 100 | 
            +
                            acts = layer_block.output[0].clone()
         | 
| 101 | 
            +
                            proj = (acts - offset) @ unit_vec.unsqueeze(-1) * unit_vec
         | 
| 102 | 
            +
                            layer_block.output[0][:] = acts - proj + coeff * k * unit_vec
         | 
| 103 | 
            +
             | 
| 104 | 
            +
             | 
| 105 | 
            +
            def load_model() -> ModelBase:
         | 
| 106 | 
            +
                steering_vecs = torch.load(config['steering_vec'], weights_only=True)
         | 
| 107 | 
            +
                offsets = torch.load(config['offset'], weights_only=True)
         | 
| 108 | 
            +
                model = ModelBase(config['model_name'], steering_vecs=steering_vecs, offsets=offsets)
         | 
| 109 | 
            +
                return model
         | 
| 110 | 
            +
             | 
    	
        requirements.txt
    CHANGED
    
    | @@ -2,3 +2,11 @@ aiohttp==3.11.16 | |
| 2 | 
             
            pandas==2.2.2
         | 
| 3 | 
             
            pyarrow==19.0.1
         | 
| 4 | 
             
            gradio_toggle==2.0.2
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 2 | 
             
            pandas==2.2.2
         | 
| 3 | 
             
            pyarrow==19.0.1
         | 
| 4 | 
             
            gradio_toggle==2.0.2
         | 
| 5 | 
            +
            transformers==4.50.0
         | 
| 6 | 
            +
            accelerate==1.6.0
         | 
| 7 | 
            +
            nnsight==0.4.3
         | 
| 8 | 
            +
            triton==3.1.0
         | 
| 9 | 
            +
            torchtyping==0.1.5
         | 
| 10 | 
            +
            tiktoken==0.8.0
         | 
| 11 | 
            +
            transformers_stream_generator==0.0.5
         | 
| 12 | 
            +
            zstandard==0.23.0
         | 
    	
        scheduler.py
    CHANGED
    
    | @@ -14,7 +14,7 @@ logger = logging.getLogger(__name__) | |
| 14 |  | 
| 15 | 
             
            def load_scheduler():
         | 
| 16 | 
             
                return ParquetScheduler(
         | 
| 17 | 
            -
                    repo_id="hannahcyberey/Censorship-Steering-Logs", every= | 
| 18 | 
             
                    private=True,
         | 
| 19 | 
             
                    squash_history=False,
         | 
| 20 | 
             
                    schema={
         | 
|  | |
| 14 |  | 
| 15 | 
             
            def load_scheduler():
         | 
| 16 | 
             
                return ParquetScheduler(
         | 
| 17 | 
            +
                    repo_id="hannahcyberey/Censorship-Steering-Logs", every=60,
         | 
| 18 | 
             
                    private=True,
         | 
| 19 | 
             
                    squash_history=False,
         | 
| 20 | 
             
                    schema={
         | 
    	
        schemas.py
    CHANGED
    
    | @@ -32,18 +32,11 @@ class UserRequest(BaseModel): | |
| 32 | 
             
                    else:
         | 
| 33 | 
             
                        self.k = self.vec_scale * vector_scaling[self.layer]["k_neg"]
         | 
| 34 |  | 
| 35 | 
            -
                def  | 
| 36 | 
             
                    return {
         | 
| 37 | 
            -
                        " | 
| 38 | 
            -
                        " | 
| 39 | 
            -
                        " | 
| 40 | 
            -
                        "k": self.k,
         | 
| 41 | 
            -
                        "layer": self.layer,
         | 
| 42 | 
            -
                        "generation_config": {
         | 
| 43 | 
            -
                            "max_new_tokens": self.max_new_tokens,
         | 
| 44 | 
            -
                            "top_p": self.top_p,
         | 
| 45 | 
            -
                            "temperature": self.temperature
         | 
| 46 | 
            -
                        }
         | 
| 47 | 
             
                    }
         | 
| 48 |  | 
| 49 |  | 
|  | |
| 32 | 
             
                    else:
         | 
| 33 | 
             
                        self.k = self.vec_scale * vector_scaling[self.layer]["k_neg"]
         | 
| 34 |  | 
| 35 | 
            +
                def generation_config(self):
         | 
| 36 | 
             
                    return {
         | 
| 37 | 
            +
                        "max_new_tokens": self.max_new_tokens,
         | 
| 38 | 
            +
                        "top_p": self.top_p,
         | 
| 39 | 
            +
                        "temperature": self.temperature
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 | 
             
                    }
         | 
| 41 |  | 
| 42 |  |