Spaces:
Build error
Build error
Delete models/export.py
Browse files- models/export.py +0 -100
models/export.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
|
2 |
-
import argparse
|
3 |
-
import sys
|
4 |
-
import time
|
5 |
-
|
6 |
-
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
|
11 |
-
import models
|
12 |
-
from models.experimental import attempt_load
|
13 |
-
from utils.activations import Hardswish, SiLU
|
14 |
-
from utils.general import set_logging, check_img_size
|
15 |
-
from utils.torch_utils import select_device
|
16 |
-
|
17 |
-
if __name__ == '__main__':
|
18 |
-
parser = argparse.ArgumentParser()
|
19 |
-
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
|
20 |
-
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
21 |
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
22 |
-
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
23 |
-
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
24 |
-
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
25 |
-
opt = parser.parse_args()
|
26 |
-
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
27 |
-
print(opt)
|
28 |
-
set_logging()
|
29 |
-
t = time.time()
|
30 |
-
|
31 |
-
# Load PyTorch model
|
32 |
-
device = select_device(opt.device)
|
33 |
-
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
34 |
-
labels = model.names
|
35 |
-
|
36 |
-
# Checks
|
37 |
-
gs = int(max(model.stride)) # grid size (max stride)
|
38 |
-
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
39 |
-
|
40 |
-
# Input
|
41 |
-
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
42 |
-
|
43 |
-
# Update model
|
44 |
-
for k, m in model.named_modules():
|
45 |
-
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
46 |
-
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
47 |
-
if isinstance(m.act, nn.Hardswish):
|
48 |
-
m.act = Hardswish()
|
49 |
-
elif isinstance(m.act, nn.SiLU):
|
50 |
-
m.act = SiLU()
|
51 |
-
# elif isinstance(m, models.yolo.Detect):
|
52 |
-
# m.forward = m.forward_export # assign forward (optional)
|
53 |
-
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
54 |
-
y = model(img) # dry run
|
55 |
-
|
56 |
-
# TorchScript export
|
57 |
-
try:
|
58 |
-
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
59 |
-
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
60 |
-
ts = torch.jit.trace(model, img, strict=False)
|
61 |
-
ts.save(f)
|
62 |
-
print('TorchScript export success, saved as %s' % f)
|
63 |
-
except Exception as e:
|
64 |
-
print('TorchScript export failure: %s' % e)
|
65 |
-
|
66 |
-
# ONNX export
|
67 |
-
try:
|
68 |
-
import onnx
|
69 |
-
|
70 |
-
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
71 |
-
f = opt.weights.replace('.pt', '.onnx') # filename
|
72 |
-
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
73 |
-
output_names=['classes', 'boxes'] if y is None else ['output'],
|
74 |
-
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
75 |
-
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
76 |
-
|
77 |
-
# Checks
|
78 |
-
onnx_model = onnx.load(f) # load onnx model
|
79 |
-
onnx.checker.check_model(onnx_model) # check onnx model
|
80 |
-
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
81 |
-
print('ONNX export success, saved as %s' % f)
|
82 |
-
except Exception as e:
|
83 |
-
print('ONNX export failure: %s' % e)
|
84 |
-
|
85 |
-
# CoreML export
|
86 |
-
try:
|
87 |
-
import coremltools as ct
|
88 |
-
|
89 |
-
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
90 |
-
# convert model from torchscript and apply pixel scaling as per detect.py
|
91 |
-
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
92 |
-
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
93 |
-
model.save(f)
|
94 |
-
print('CoreML export success, saved as %s' % f)
|
95 |
-
except Exception as e:
|
96 |
-
print('CoreML export failure: %s' % e)
|
97 |
-
|
98 |
-
# Finish
|
99 |
-
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|