Spaces:
Build error
Build error
| import time | |
| from lib.core.evaluate import ConfusionMatrix,SegmentationMetric | |
| from lib.core.general import non_max_suppression,check_img_size,scale_coords,xyxy2xywh,xywh2xyxy,box_iou,coco80_to_coco91_class,plot_images,ap_per_class,output_to_target | |
| from lib.utils.utils import time_synchronized | |
| from lib.utils import plot_img_and_mask,plot_one_box,show_seg_result | |
| import torch | |
| from threading import Thread | |
| import numpy as np | |
| from PIL import Image | |
| from torchvision import transforms | |
| from pathlib import Path | |
| import json | |
| import random | |
| import cv2 | |
| import os | |
| import math | |
| from torch.cuda import amp | |
| from tqdm import tqdm | |
| def train(cfg, train_loader, model, criterion, optimizer, scaler, epoch, num_batch, num_warmup, | |
| writer_dict, logger, device, rank=-1): | |
| """ | |
| train for one epoch | |
| Inputs: | |
| - config: configurations | |
| - train_loader: loder for data | |
| - model: | |
| - criterion: (function) calculate all the loss, return total_loss, head_losses | |
| - writer_dict: | |
| outputs(2,) | |
| output[0] len:3, [1,3,32,32,85], [1,3,16,16,85], [1,3,8,8,85] | |
| output[1] len:1, [2,256,256] | |
| output[2] len:1, [2,256,256] | |
| target(2,) | |
| target[0] [1,n,5] | |
| target[1] [2,256,256] | |
| target[2] [2,256,256] | |
| Returns: | |
| None | |
| """ | |
| batch_time = AverageMeter() | |
| data_time = AverageMeter() | |
| losses = AverageMeter() | |
| # switch to train mode | |
| model.train() | |
| start = time.time() | |
| for i, (input, target, paths, shapes) in enumerate(train_loader): | |
| intermediate = time.time() | |
| #print('tims:{}'.format(intermediate-start)) | |
| num_iter = i + num_batch * (epoch - 1) | |
| if num_iter < num_warmup: | |
| # warm up | |
| lf = lambda x: ((1 + math.cos(x * math.pi / cfg.TRAIN.END_EPOCH)) / 2) * \ | |
| (1 - cfg.TRAIN.LRF) + cfg.TRAIN.LRF # cosine | |
| xi = [0, num_warmup] | |
| # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) | |
| for j, x in enumerate(optimizer.param_groups): | |
| # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 | |
| x['lr'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_BIASE_LR if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) | |
| if 'momentum' in x: | |
| x['momentum'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_MOMENTUM, cfg.TRAIN.MOMENTUM]) | |
| data_time.update(time.time() - start) | |
| if not cfg.DEBUG: | |
| input = input.to(device, non_blocking=True) | |
| assign_target = [] | |
| for tgt in target: | |
| assign_target.append(tgt.to(device)) | |
| target = assign_target | |
| with amp.autocast(enabled=device.type != 'cpu'): | |
| outputs = model(input) | |
| total_loss, head_losses = criterion(outputs, target, shapes,model) | |
| # print(head_losses) | |
| # compute gradient and do update step | |
| optimizer.zero_grad() | |
| scaler.scale(total_loss).backward() | |
| scaler.step(optimizer) | |
| scaler.update() | |
| if rank in [-1, 0]: | |
| # measure accuracy and record loss | |
| losses.update(total_loss.item(), input.size(0)) | |
| # _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(), | |
| # target.detach().cpu().numpy()) | |
| # acc.update(avg_acc, cnt) | |
| # measure elapsed time | |
| batch_time.update(time.time() - start) | |
| end = time.time() | |
| if i % cfg.PRINT_FREQ == 0: | |
| msg = 'Epoch: [{0}][{1}/{2}]\t' \ | |
| 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ | |
| 'Speed {speed:.1f} samples/s\t' \ | |
| 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ | |
| 'Loss {loss.val:.5f} ({loss.avg:.5f})'.format( | |
| epoch, i, len(train_loader), batch_time=batch_time, | |
| speed=input.size(0)/batch_time.val, | |
| data_time=data_time, loss=losses) | |
| logger.info(msg) | |
| writer = writer_dict['writer'] | |
| global_steps = writer_dict['train_global_steps'] | |
| writer.add_scalar('train_loss', losses.val, global_steps) | |
| # writer.add_scalar('train_acc', acc.val, global_steps) | |
| writer_dict['train_global_steps'] = global_steps + 1 | |
| def validate(epoch,config, val_loader, val_dataset, model, criterion, output_dir, | |
| tb_log_dir, writer_dict=None, logger=None, device='cpu', rank=-1): | |
| """ | |
| validata | |
| Inputs: | |
| - config: configurations | |
| - train_loader: loder for data | |
| - model: | |
| - criterion: (function) calculate all the loss, return | |
| - writer_dict: | |
| Return: | |
| None | |
| """ | |
| # setting | |
| max_stride = 32 | |
| weights = None | |
| save_dir = output_dir + os.path.sep + 'visualization' | |
| if not os.path.exists(save_dir): | |
| os.mkdir(save_dir) | |
| # print(save_dir) | |
| _, imgsz = [check_img_size(x, s=max_stride) for x in config.MODEL.IMAGE_SIZE] #imgsz is multiple of max_stride | |
| batch_size = config.TRAIN.BATCH_SIZE_PER_GPU * len(config.GPUS) | |
| test_batch_size = config.TEST.BATCH_SIZE_PER_GPU * len(config.GPUS) | |
| training = False | |
| is_coco = False #is coco dataset | |
| save_conf=False # save auto-label confidences | |
| verbose=False | |
| save_hybrid=False | |
| log_imgs,wandb = min(16,100), None | |
| nc = 1 | |
| iouv = torch.linspace(0.5,0.95,10).to(device) #iou vector for mAP@0.5:0.95 | |
| niou = iouv.numel() | |
| try: | |
| import wandb | |
| except ImportError: | |
| wandb = None | |
| log_imgs = 0 | |
| seen = 0 | |
| confusion_matrix = ConfusionMatrix(nc=model.nc) #detector confusion matrix | |
| da_metric = SegmentationMetric(config.num_seg_class) #segment confusion matrix | |
| ll_metric = SegmentationMetric(2) #segment confusion matrix | |
| names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} | |
| colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |
| coco91class = coco80_to_coco91_class() | |
| s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') | |
| p, r, f1, mp, mr, map50, map, t_inf, t_nms = 0., 0., 0., 0., 0., 0., 0., 0., 0. | |
| losses = AverageMeter() | |
| da_acc_seg = AverageMeter() | |
| da_IoU_seg = AverageMeter() | |
| da_mIoU_seg = AverageMeter() | |
| ll_acc_seg = AverageMeter() | |
| ll_IoU_seg = AverageMeter() | |
| ll_mIoU_seg = AverageMeter() | |
| T_inf = AverageMeter() | |
| T_nms = AverageMeter() | |
| # switch to train mode | |
| model.eval() | |
| jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] | |
| for batch_i, (img, target, paths, shapes) in tqdm(enumerate(val_loader), total=len(val_loader)): | |
| if not config.DEBUG: | |
| img = img.to(device, non_blocking=True) | |
| assign_target = [] | |
| for tgt in target: | |
| assign_target.append(tgt.to(device)) | |
| target = assign_target | |
| nb, _, height, width = img.shape #batch size, channel, height, width | |
| with torch.no_grad(): | |
| pad_w, pad_h = shapes[0][1][1] | |
| pad_w = int(pad_w) | |
| pad_h = int(pad_h) | |
| ratio = shapes[0][1][0][0] | |
| t = time_synchronized() | |
| det_out, da_seg_out, ll_seg_out= model(img) | |
| t_inf = time_synchronized() - t | |
| if batch_i > 0: | |
| T_inf.update(t_inf/img.size(0),img.size(0)) | |
| inf_out,train_out = det_out | |
| #driving area segment evaluation | |
| _,da_predict=torch.max(da_seg_out, 1) | |
| _,da_gt=torch.max(target[1], 1) | |
| da_predict = da_predict[:, pad_h:height-pad_h, pad_w:width-pad_w] | |
| da_gt = da_gt[:, pad_h:height-pad_h, pad_w:width-pad_w] | |
| da_metric.reset() | |
| da_metric.addBatch(da_predict.cpu(), da_gt.cpu()) | |
| da_acc = da_metric.pixelAccuracy() | |
| da_IoU = da_metric.IntersectionOverUnion() | |
| da_mIoU = da_metric.meanIntersectionOverUnion() | |
| da_acc_seg.update(da_acc,img.size(0)) | |
| da_IoU_seg.update(da_IoU,img.size(0)) | |
| da_mIoU_seg.update(da_mIoU,img.size(0)) | |
| #lane line segment evaluation | |
| _,ll_predict=torch.max(ll_seg_out, 1) | |
| _,ll_gt=torch.max(target[2], 1) | |
| ll_predict = ll_predict[:, pad_h:height-pad_h, pad_w:width-pad_w] | |
| ll_gt = ll_gt[:, pad_h:height-pad_h, pad_w:width-pad_w] | |
| ll_metric.reset() | |
| ll_metric.addBatch(ll_predict.cpu(), ll_gt.cpu()) | |
| ll_acc = ll_metric.lineAccuracy() | |
| ll_IoU = ll_metric.IntersectionOverUnion() | |
| ll_mIoU = ll_metric.meanIntersectionOverUnion() | |
| ll_acc_seg.update(ll_acc,img.size(0)) | |
| ll_IoU_seg.update(ll_IoU,img.size(0)) | |
| ll_mIoU_seg.update(ll_mIoU,img.size(0)) | |
| total_loss, head_losses = criterion((train_out,da_seg_out, ll_seg_out), target, shapes,model) #Compute loss | |
| losses.update(total_loss.item(), img.size(0)) | |
| #NMS | |
| t = time_synchronized() | |
| target[0][:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels | |
| lb = [target[0][target[0][:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling | |
| output = non_max_suppression(inf_out, conf_thres= config.TEST.NMS_CONF_THRESHOLD, iou_thres=config.TEST.NMS_IOU_THRESHOLD, labels=lb) | |
| #output = non_max_suppression(inf_out, conf_thres=0.001, iou_thres=0.6) | |
| #output = non_max_suppression(inf_out, conf_thres=config.TEST.NMS_CONF_THRES, iou_thres=config.TEST.NMS_IOU_THRES) | |
| t_nms = time_synchronized() - t | |
| if batch_i > 0: | |
| T_nms.update(t_nms/img.size(0),img.size(0)) | |
| if config.TEST.PLOTS: | |
| if batch_i == 0: | |
| for i in range(test_batch_size): | |
| img_test = cv2.imread(paths[i]) | |
| da_seg_mask = da_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) | |
| da_seg_mask = torch.nn.functional.interpolate(da_seg_mask, scale_factor=int(1/ratio), mode='bilinear') | |
| _, da_seg_mask = torch.max(da_seg_mask, 1) | |
| da_gt_mask = target[1][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) | |
| da_gt_mask = torch.nn.functional.interpolate(da_gt_mask, scale_factor=int(1/ratio), mode='bilinear') | |
| _, da_gt_mask = torch.max(da_gt_mask, 1) | |
| da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy() | |
| da_gt_mask = da_gt_mask.int().squeeze().cpu().numpy() | |
| # seg_mask = seg_mask > 0.5 | |
| # plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir) | |
| img_test1 = img_test.copy() | |
| _ = show_seg_result(img_test, da_seg_mask, i,epoch,save_dir) | |
| _ = show_seg_result(img_test1, da_gt_mask, i, epoch, save_dir, is_gt=True) | |
| img_ll = cv2.imread(paths[i]) | |
| ll_seg_mask = ll_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) | |
| ll_seg_mask = torch.nn.functional.interpolate(ll_seg_mask, scale_factor=int(1/ratio), mode='bilinear') | |
| _, ll_seg_mask = torch.max(ll_seg_mask, 1) | |
| ll_gt_mask = target[2][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0) | |
| ll_gt_mask = torch.nn.functional.interpolate(ll_gt_mask, scale_factor=int(1/ratio), mode='bilinear') | |
| _, ll_gt_mask = torch.max(ll_gt_mask, 1) | |
| ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy() | |
| ll_gt_mask = ll_gt_mask.int().squeeze().cpu().numpy() | |
| # seg_mask = seg_mask > 0.5 | |
| # plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir) | |
| img_ll1 = img_ll.copy() | |
| _ = show_seg_result(img_ll, ll_seg_mask, i,epoch,save_dir, is_ll=True) | |
| _ = show_seg_result(img_ll1, ll_gt_mask, i, epoch, save_dir, is_ll=True, is_gt=True) | |
| img_det = cv2.imread(paths[i]) | |
| img_gt = img_det.copy() | |
| det = output[i].clone() | |
| if len(det): | |
| det[:,:4] = scale_coords(img[i].shape[1:],det[:,:4],img_det.shape).round() | |
| for *xyxy,conf,cls in reversed(det): | |
| #print(cls) | |
| label_det_pred = f'{names[int(cls)]} {conf:.2f}' | |
| plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=3) | |
| cv2.imwrite(save_dir+"/batch_{}_{}_det_pred.png".format(epoch,i),img_det) | |
| labels = target[0][target[0][:, 0] == i, 1:] | |
| # print(labels) | |
| labels[:,1:5]=xywh2xyxy(labels[:,1:5]) | |
| if len(labels): | |
| labels[:,1:5]=scale_coords(img[i].shape[1:],labels[:,1:5],img_gt.shape).round() | |
| for cls,x1,y1,x2,y2 in labels: | |
| #print(names) | |
| #print(cls) | |
| label_det_gt = f'{names[int(cls)]}' | |
| xyxy = (x1,y1,x2,y2) | |
| plot_one_box(xyxy, img_gt , label=label_det_gt, color=colors[int(cls)], line_thickness=3) | |
| cv2.imwrite(save_dir+"/batch_{}_{}_det_gt.png".format(epoch,i),img_gt) | |
| # Statistics per image | |
| # output([xyxy,conf,cls]) | |
| # target[0] ([img_id,cls,xyxy]) | |
| for si, pred in enumerate(output): | |
| labels = target[0][target[0][:, 0] == si, 1:] #all object in one image | |
| nl = len(labels) # num of object | |
| tcls = labels[:, 0].tolist() if nl else [] # target class | |
| path = Path(paths[si]) | |
| seen += 1 | |
| if len(pred) == 0: | |
| if nl: | |
| stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) | |
| continue | |
| # Predictions | |
| predn = pred.clone() | |
| scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred | |
| # Append to text file | |
| if config.TEST.SAVE_TXT: | |
| gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh | |
| for *xyxy, conf, cls in predn.tolist(): | |
| xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | |
| line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format | |
| with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: | |
| f.write(('%g ' * len(line)).rstrip() % line + '\n') | |
| # W&B logging | |
| if config.TEST.PLOTS and len(wandb_images) < log_imgs: | |
| box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, | |
| "class_id": int(cls), | |
| "box_caption": "%s %.3f" % (names[cls], conf), | |
| "scores": {"class_score": conf}, | |
| "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] | |
| boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space | |
| wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name)) | |
| # Append to pycocotools JSON dictionary | |
| if config.TEST.SAVE_JSON: | |
| # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... | |
| image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
| box = xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| for p, b in zip(pred.tolist(), box.tolist()): | |
| jdict.append({'image_id': image_id, | |
| 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), | |
| 'bbox': [round(x, 3) for x in b], | |
| 'score': round(p[4], 5)}) | |
| # Assign all predictions as incorrect | |
| correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) | |
| if nl: | |
| detected = [] # target indices | |
| tcls_tensor = labels[:, 0] | |
| # target boxes | |
| tbox = xywh2xyxy(labels[:, 1:5]) | |
| scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels | |
| if config.TEST.PLOTS: | |
| confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1)) | |
| # Per target class | |
| for cls in torch.unique(tcls_tensor): | |
| ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices | |
| pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices | |
| # Search for detections | |
| if pi.shape[0]: | |
| # Prediction to target ious | |
| # n*m n:pred m:label | |
| ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices | |
| # Append detections | |
| detected_set = set() | |
| for j in (ious > iouv[0]).nonzero(as_tuple=False): | |
| d = ti[i[j]] # detected target | |
| if d.item() not in detected_set: | |
| detected_set.add(d.item()) | |
| detected.append(d) | |
| correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn | |
| if len(detected) == nl: # all targets already located in image | |
| break | |
| # Append statistics (correct, conf, pcls, tcls) | |
| stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) | |
| if config.TEST.PLOTS and batch_i < 3: | |
| f = save_dir +'/'+ f'test_batch{batch_i}_labels.jpg' # labels | |
| #Thread(target=plot_images, args=(img, target[0], paths, f, names), daemon=True).start() | |
| f = save_dir +'/'+ f'test_batch{batch_i}_pred.jpg' # predictions | |
| #Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start() | |
| # Compute statistics | |
| # stats : [[all_img_correct]...[all_img_tcls]] | |
| stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy zip(*) :unzip | |
| map70 = None | |
| map75 = None | |
| if len(stats) and stats[0].any(): | |
| p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False, save_dir=save_dir, names=names) | |
| ap50, ap70, ap75,ap = ap[:, 0], ap[:,4], ap[:,5],ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95] | |
| mp, mr, map50, map70, map75, map = p.mean(), r.mean(), ap50.mean(), ap70.mean(),ap75.mean(),ap.mean() | |
| nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class | |
| else: | |
| nt = torch.zeros(1) | |
| # Print results | |
| pf = '%20s' + '%12.3g' * 6 # print format | |
| print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) | |
| #print(map70) | |
| #print(map75) | |
| # Print results per class | |
| if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats): | |
| for i, c in enumerate(ap_class): | |
| print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |
| # Print speeds | |
| t = tuple(x / seen * 1E3 for x in (t_inf, t_nms, t_inf + t_nms)) + (imgsz, imgsz, batch_size) # tuple | |
| if not training: | |
| print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) | |
| # Plots | |
| if config.TEST.PLOTS: | |
| confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |
| if wandb and wandb.run: | |
| wandb.log({"Images": wandb_images}) | |
| wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]}) | |
| # Save JSON | |
| if config.TEST.SAVE_JSON and len(jdict): | |
| w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights | |
| anno_json = '../coco/annotations/instances_val2017.json' # annotations json | |
| pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |
| print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) | |
| with open(pred_json, 'w') as f: | |
| json.dump(jdict, f) | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| from pycocotools.coco import COCO | |
| from pycocotools.cocoeval import COCOeval | |
| anno = COCO(anno_json) # init annotations api | |
| pred = anno.loadRes(pred_json) # init predictions api | |
| eval = COCOeval(anno, pred, 'bbox') | |
| if is_coco: | |
| eval.params.imgIds = [int(Path(x).stem) for x in val_loader.dataset.img_files] # image IDs to evaluate | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) | |
| except Exception as e: | |
| print(f'pycocotools unable to run: {e}') | |
| # Return results | |
| if not training: | |
| s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if config.TEST.SAVE_TXT else '' | |
| print(f"Results saved to {save_dir}{s}") | |
| model.float() # for training | |
| maps = np.zeros(nc) + map | |
| for i, c in enumerate(ap_class): | |
| maps[c] = ap[i] | |
| da_segment_result = (da_acc_seg.avg,da_IoU_seg.avg,da_mIoU_seg.avg) | |
| ll_segment_result = (ll_acc_seg.avg,ll_IoU_seg.avg,ll_mIoU_seg.avg) | |
| # print(da_segment_result) | |
| # print(ll_segment_result) | |
| detect_result = np.asarray([mp, mr, map50, map]) | |
| # print('mp:{},mr:{},map50:{},map:{}'.format(mp, mr, map50, map)) | |
| #print segmet_result | |
| t = [T_inf.avg, T_nms.avg] | |
| return da_segment_result, ll_segment_result, detect_result, losses.avg, maps, t | |
| class AverageMeter(object): | |
| """Computes and stores the average and current value""" | |
| def __init__(self): | |
| self.reset() | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val, n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count if self.count != 0 else 0 | |