hanifekaptan commited on
Commit
2907dc2
·
verified ·
1 Parent(s): 9426012

Upload 3 files

Browse files
Files changed (3) hide show
  1. akcigerKanseri.csv +310 -0
  2. app.py +71 -0
  3. requirements.txt +5 -0
akcigerKanseri.csv ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gender,age,smoking,yellow_fingers,anxiety,peer_pressure,chronic_disease,fatigue,allergy,wheezing,alcohol_consuming,coughing,shortness_of_breath,swallowing_difficulty,chest_pain,lung_cancer
2
+ Male,69,0,1,1,0,0,1,0,1,1,1,1,1,1,1
3
+ Male,74,1,0,0,0,1,1,1,0,0,0,1,1,1,1
4
+ Female,59,0,0,0,1,0,1,0,1,0,1,1,0,1,0
5
+ Male,63,1,1,1,0,0,0,0,0,1,0,0,1,1,0
6
+ Female,63,0,1,0,0,0,0,0,1,0,1,1,0,0,0
7
+ Female,75,0,1,0,0,1,1,1,1,0,1,1,0,0,1
8
+ Male,52,1,0,0,0,0,1,0,1,1,1,1,0,1,1
9
+ Female,51,1,1,1,1,0,1,1,0,0,0,1,1,0,1
10
+ Female,68,1,0,1,0,0,1,0,0,0,0,0,0,0,0
11
+ Male,53,1,1,1,1,1,0,1,0,1,0,0,1,1,1
12
+ Female,61,1,1,1,1,1,1,0,1,0,1,1,1,0,1
13
+ Male,72,0,0,0,0,1,1,1,1,1,1,1,0,1,1
14
+ Female,60,1,0,0,0,0,1,0,0,0,0,1,0,0,0
15
+ Male,58,1,0,0,0,0,1,1,1,1,1,1,0,1,1
16
+ Male,69,1,0,0,0,0,0,1,1,1,1,0,0,1,0
17
+ Female,48,0,1,1,1,1,1,1,1,0,1,1,1,0,1
18
+ Male,75,1,0,0,0,1,0,1,1,1,1,1,0,1,1
19
+ Male,57,1,1,1,1,1,0,0,0,1,0,0,1,1,1
20
+ Female,68,1,1,1,1,1,1,0,0,0,1,1,0,0,1
21
+ Female,61,0,0,0,0,1,1,0,0,0,0,1,0,0,0
22
+ Female,44,1,1,1,1,1,1,0,0,0,0,1,1,0,1
23
+ Female,64,0,1,1,1,0,0,1,1,0,1,0,1,0,1
24
+ Female,21,1,0,0,0,1,1,1,0,0,0,1,0,0,0
25
+ Male,60,1,0,0,0,0,1,1,1,1,1,1,0,1,1
26
+ Male,72,1,1,1,1,1,0,1,1,1,1,0,1,1,1
27
+ Male,65,0,1,1,0,0,1,0,1,1,1,1,1,1,1
28
+ Female,61,1,1,1,0,0,1,1,0,1,0,1,1,1,1
29
+ Male,69,0,0,0,1,0,1,0,1,0,1,1,0,1,0
30
+ Female,53,1,1,1,0,1,0,0,1,1,0,1,1,1,1
31
+ Male,55,0,1,0,0,0,1,0,1,1,1,1,0,0,0
32
+ Female,57,1,1,0,0,0,0,0,0,0,0,1,0,0,0
33
+ Male,62,1,0,1,0,0,0,1,1,1,0,1,1,1,1
34
+ Male,56,1,1,1,0,0,0,0,0,0,0,1,1,0,0
35
+ Female,67,1,1,1,0,1,0,0,0,0,0,1,1,1,1
36
+ Male,59,0,1,1,0,0,0,0,0,0,0,0,1,1,0
37
+ Female,59,1,1,1,0,1,0,0,0,0,0,1,1,0,1
38
+ Male,60,0,1,0,0,1,0,0,1,0,1,1,0,1,1
39
+ Female,56,0,0,0,0,1,0,0,1,0,0,1,1,0,0
40
+ Male,56,1,0,0,0,1,0,0,1,0,0,1,0,1,1
41
+ Male,60,1,0,0,0,1,0,1,1,1,1,0,0,1,1
42
+ Male,68,1,0,1,0,0,1,1,0,1,1,1,0,1,1
43
+ Male,63,0,0,0,1,0,1,1,1,1,0,0,1,0,1
44
+ Female,77,0,1,1,1,1,1,0,1,1,0,0,0,0,1
45
+ Male,52,1,0,0,1,0,1,1,1,1,0,1,0,1,1
46
+ Female,70,1,1,0,1,1,0,0,0,1,1,0,1,0,1
47
+ Male,72,1,1,1,1,1,1,0,1,1,1,1,1,1,1
48
+ Male,62,1,1,0,0,1,0,1,0,0,1,1,1,1,1
49
+ Female,64,1,1,0,1,0,1,0,1,1,1,0,1,1,1
50
+ Female,70,0,0,1,1,1,1,1,1,1,0,1,1,1,1
51
+ Male,60,0,0,1,1,1,0,0,0,1,0,0,0,0,0
52
+ Female,56,0,0,0,1,1,1,1,1,1,0,0,0,1,1
53
+ Male,63,1,1,1,0,1,1,1,1,0,0,1,0,0,1
54
+ Female,54,1,0,0,1,0,1,1,1,1,1,0,1,1,1
55
+ Male,49,1,0,0,1,1,1,1,1,1,1,1,1,1,1
56
+ Female,57,0,1,0,1,1,1,1,0,1,1,0,0,0,1
57
+ Male,52,0,1,1,0,1,0,1,1,1,1,0,1,0,1
58
+ Female,63,0,1,0,1,0,1,0,0,0,1,1,0,1,1
59
+ Male,73,0,0,0,0,1,0,1,0,1,1,1,1,1,1
60
+ Male,47,0,1,0,1,1,1,0,1,0,0,1,1,1,1
61
+ Male,69,1,1,1,1,0,1,1,0,1,1,1,0,1,1
62
+ Male,70,0,1,0,1,1,1,1,1,1,1,0,1,1,1
63
+ Female,60,0,1,1,0,0,0,0,0,0,1,0,0,0,0
64
+ Male,70,0,1,0,1,0,1,1,1,1,1,0,0,0,1
65
+ Female,68,0,0,1,0,1,0,1,1,1,0,0,1,0,1
66
+ Male,74,0,1,0,1,0,1,1,1,1,1,1,0,1,1
67
+ Female,71,1,1,1,1,1,1,0,1,0,1,0,1,1,1
68
+ Female,56,0,1,0,0,1,1,1,1,0,1,1,0,1,1
69
+ Male,66,1,0,0,0,0,1,0,1,1,1,1,0,0,1
70
+ Female,76,1,1,1,1,0,1,1,0,0,0,1,1,1,1
71
+ Female,78,1,1,1,1,0,1,0,1,0,1,1,1,0,1
72
+ Male,68,1,1,1,1,0,0,1,0,1,0,0,1,1,1
73
+ Female,66,1,1,1,1,0,1,0,1,0,1,1,1,0,1
74
+ Male,67,0,0,0,0,1,1,1,1,1,1,1,0,1,1
75
+ Female,60,1,0,0,0,1,1,0,0,0,0,1,0,0,1
76
+ Male,61,1,0,0,0,0,1,1,1,1,1,1,0,1,1
77
+ Male,58,1,0,0,0,0,0,1,1,1,1,0,0,0,1
78
+ Female,76,0,1,1,1,1,1,1,1,0,1,1,1,1,1
79
+ Male,56,1,0,0,0,0,1,1,1,1,1,1,0,1,1
80
+ Male,67,1,1,1,1,1,0,0,0,1,0,0,1,1,1
81
+ Female,73,1,1,1,1,0,1,0,0,0,1,1,1,1,1
82
+ Female,58,0,0,0,0,0,1,0,0,0,0,1,0,0,0
83
+ Female,54,1,1,1,1,1,1,0,0,0,0,1,1,0,1
84
+ Female,62,1,1,1,1,1,0,1,1,1,0,0,1,1,1
85
+ Female,81,0,0,0,1,1,0,1,0,1,1,1,0,0,1
86
+ Male,56,0,0,0,0,1,1,1,0,1,1,1,0,1,1
87
+ Male,60,0,1,1,0,0,0,0,1,1,1,1,1,0,1
88
+ Male,66,0,1,1,0,1,0,1,0,1,1,1,0,1,1
89
+ Male,62,0,1,1,0,0,1,0,1,0,0,0,1,1,1
90
+ Female,62,1,1,1,0,1,0,1,0,1,0,0,0,0,1
91
+ Female,55,1,0,0,1,1,1,1,1,1,0,0,1,1,1
92
+ Female,62,0,0,0,1,0,0,0,1,1,0,0,1,1,1
93
+ Female,71,0,0,0,0,1,1,1,0,0,1,1,0,1,1
94
+ Male,52,1,0,0,0,1,1,1,1,1,0,0,1,1,1
95
+ Female,59,0,1,1,1,1,0,1,1,1,1,1,1,0,1
96
+ Male,48,1,0,0,0,1,1,1,0,1,1,1,1,1,1
97
+ Male,60,0,1,1,1,0,1,0,0,0,0,0,1,1,1
98
+ Female,61,1,1,1,0,0,0,1,0,1,1,1,0,1,1
99
+ Male,59,1,0,0,1,0,0,0,0,1,1,1,0,0,1
100
+ Male,64,0,1,1,1,0,1,1,0,0,1,0,1,0,1
101
+ Male,56,1,0,0,0,0,1,1,1,1,1,1,0,1,1
102
+ Male,58,1,0,0,0,0,0,1,1,1,1,0,0,0,1
103
+ Female,81,0,1,1,1,1,1,1,1,0,1,1,1,1,1
104
+ Male,64,1,0,0,0,0,1,1,1,1,1,1,0,1,1
105
+ Male,62,1,1,1,1,1,0,0,0,1,0,0,1,1,1
106
+ Female,72,1,1,1,1,0,1,0,0,0,1,1,1,1,1
107
+ Female,60,0,0,0,0,1,1,0,0,0,0,1,0,0,1
108
+ Female,61,1,1,1,1,1,1,0,0,0,0,1,1,0,1
109
+ Female,60,1,1,1,1,1,0,1,1,1,0,0,1,1,1
110
+ Female,49,0,0,0,1,1,0,1,0,1,1,1,0,0,1
111
+ Male,53,0,0,0,0,1,1,1,0,1,0,1,0,1,1
112
+ Male,58,0,1,1,0,0,1,0,1,1,1,1,1,1,1
113
+ Male,61,1,1,1,0,0,1,1,0,1,0,1,1,1,1
114
+ Female,68,0,0,0,1,0,1,0,1,0,1,1,0,1,1
115
+ Male,60,1,1,1,0,0,0,0,0,1,0,0,1,1,1
116
+ Female,72,0,1,0,0,0,1,0,1,1,1,1,0,0,1
117
+ Female,72,0,1,0,0,1,1,1,1,0,1,1,0,0,1
118
+ Male,57,1,0,0,0,0,1,0,1,1,1,1,0,1,1
119
+ Female,51,1,1,1,1,0,1,1,0,0,0,1,1,0,1
120
+ Female,54,1,1,1,1,0,1,0,1,0,1,1,1,0,1
121
+ Female,56,0,1,1,1,0,0,1,0,1,0,0,1,1,1
122
+ Male,77,1,1,1,1,0,1,0,1,0,1,1,1,0,1
123
+ Male,64,0,0,0,0,1,1,1,1,1,1,1,0,1,1
124
+ Male,57,1,0,1,0,1,1,0,0,0,0,1,0,0,1
125
+ Female,66,1,1,1,0,1,1,1,1,1,1,1,0,0,1
126
+ Male,70,1,0,0,0,0,0,1,0,1,1,0,0,1,1
127
+ Female,53,0,1,1,1,1,1,1,0,0,1,1,0,0,1
128
+ Male,51,1,0,0,0,0,1,0,1,1,1,1,0,1,1
129
+ Male,58,1,1,1,1,1,0,0,0,1,0,0,1,1,1
130
+ Female,58,1,1,1,1,0,1,0,0,0,1,1,1,0,1
131
+ Female,63,0,0,0,0,1,1,0,0,0,0,1,0,0,0
132
+ Female,51,1,1,1,1,0,1,0,0,0,0,1,1,0,1
133
+ Female,61,0,1,1,1,0,0,1,1,0,1,0,1,0,1
134
+ Female,61,1,0,0,0,1,1,1,0,0,0,1,0,0,1
135
+ Male,76,1,0,0,0,0,1,1,1,1,1,1,0,1,1
136
+ Male,71,1,1,1,0,1,0,1,1,1,1,0,1,1,1
137
+ Male,69,0,0,1,0,0,1,0,1,1,1,1,1,0,1
138
+ Female,56,1,1,1,0,0,1,1,0,0,0,1,0,1,1
139
+ Male,67,0,0,0,1,0,1,0,1,0,1,1,0,1,1
140
+ Female,54,1,1,1,0,1,0,0,1,1,0,1,1,1,1
141
+ Male,63,0,1,0,0,0,1,0,1,1,1,1,0,0,1
142
+ Female,47,1,1,0,1,1,1,1,1,0,1,1,0,0,1
143
+ Male,62,1,0,1,0,0,1,0,1,1,1,1,0,1,1
144
+ Male,65,1,1,1,1,0,1,1,0,0,0,1,1,0,1
145
+ Female,63,1,1,1,1,1,1,1,1,0,1,1,1,1,1
146
+ Male,64,0,1,1,1,0,0,1,0,1,0,0,1,1,1
147
+ Female,65,1,1,1,1,0,1,0,1,0,1,1,1,0,1
148
+ Male,51,0,1,0,0,1,1,1,1,1,1,1,0,1,1
149
+ Female,56,0,0,0,1,1,1,0,0,1,1,1,1,0,1
150
+ Male,70,1,0,0,0,0,1,1,1,1,1,1,0,1,1
151
+ Male,58,1,0,0,0,0,0,1,1,1,1,0,0,1,1
152
+ Male,67,1,0,1,0,0,1,1,0,1,1,1,0,1,1
153
+ Male,62,0,0,0,1,0,1,1,1,1,0,0,1,0,1
154
+ Female,74,0,1,1,1,1,1,0,1,1,0,0,0,0,1
155
+ Male,69,1,0,0,1,0,0,0,0,0,0,0,0,1,0
156
+ Female,64,1,1,0,1,1,0,0,0,0,0,0,0,0,0
157
+ Male,75,1,1,1,1,1,0,0,0,0,0,0,0,1,1
158
+ Male,47,1,1,0,0,1,0,0,0,0,0,0,0,1,0
159
+ Female,57,1,1,0,1,0,0,0,0,0,0,0,0,1,0
160
+ Female,56,0,0,1,1,1,1,1,1,1,0,1,1,1,1
161
+ Male,68,0,0,1,1,1,0,0,0,1,0,0,0,0,0
162
+ Female,55,0,0,0,1,1,1,1,1,1,0,0,0,1,1
163
+ Male,62,1,1,1,0,1,1,1,1,0,0,1,0,0,1
164
+ Female,73,1,0,0,1,0,1,1,1,1,1,0,1,1,1
165
+ Male,68,1,0,0,1,1,1,1,1,1,1,1,1,1,1
166
+ Female,75,0,1,0,1,1,1,1,0,1,1,0,0,0,1
167
+ Male,63,0,1,1,0,1,0,1,1,1,1,0,1,0,1
168
+ Female,61,0,1,0,1,0,1,0,0,0,1,1,0,1,1
169
+ Male,62,0,0,0,0,1,0,1,0,1,1,1,1,1,1
170
+ Male,44,0,1,0,1,1,1,0,1,0,0,1,1,1,1
171
+ Male,56,1,1,1,1,0,1,1,0,1,1,1,0,1,1
172
+ Male,54,0,1,0,1,1,1,1,1,1,1,0,1,1,1
173
+ Female,57,0,1,1,0,0,0,0,0,0,1,0,0,0,0
174
+ Male,56,0,1,0,1,0,1,1,1,1,1,0,0,0,1
175
+ Female,69,0,0,1,0,1,0,1,1,1,0,0,1,0,1
176
+ Male,72,0,1,0,1,0,1,1,1,1,1,1,0,1,1
177
+ Female,59,1,1,1,1,1,1,0,1,0,1,0,1,1,1
178
+ Female,70,0,1,0,0,1,1,1,1,0,1,1,0,1,1
179
+ Male,64,1,0,0,0,0,1,0,1,1,1,1,0,0,1
180
+ Female,61,1,1,1,1,0,1,1,0,0,0,1,1,1,1
181
+ Female,72,1,1,1,1,0,1,0,1,0,1,1,1,0,1
182
+ Male,63,1,1,1,1,0,0,1,0,1,0,0,1,1,1
183
+ Female,74,1,1,1,1,0,1,0,1,0,1,1,1,0,1
184
+ Male,71,0,0,0,0,1,1,1,1,1,1,1,0,1,1
185
+ Female,71,1,0,0,0,1,1,0,0,0,0,1,0,0,0
186
+ Male,72,1,0,0,0,0,1,1,1,1,1,1,0,1,1
187
+ Male,77,1,0,0,0,0,0,1,1,1,1,0,0,0,1
188
+ Female,72,0,1,1,1,1,1,0,0,0,0,0,0,0,1
189
+ Male,55,1,0,0,0,0,1,0,0,0,0,0,0,0,1
190
+ Male,65,1,1,1,1,1,0,0,0,0,0,0,0,0,1
191
+ Female,67,1,1,1,1,0,1,0,0,0,0,0,0,0,1
192
+ Female,69,0,0,0,0,1,1,0,0,0,0,0,0,0,1
193
+ Female,55,1,1,1,1,1,1,0,0,0,0,0,0,0,1
194
+ Female,51,1,1,1,1,1,0,0,0,0,0,0,0,0,1
195
+ Female,64,0,0,0,1,1,0,0,0,0,0,0,0,0,1
196
+ Male,63,0,0,0,0,1,1,1,0,1,1,1,0,1,1
197
+ Male,69,0,1,1,0,0,0,0,1,1,1,1,1,0,1
198
+ Male,64,0,1,1,0,1,0,1,0,1,1,1,0,1,1
199
+ Male,59,0,1,1,0,0,1,0,1,0,0,0,1,1,1
200
+ Female,73,1,1,1,0,1,0,1,0,1,0,0,0,0,1
201
+ Female,55,1,0,0,1,1,1,1,1,1,0,0,1,1,1
202
+ Female,63,0,0,0,1,0,0,0,1,1,0,0,1,1,1
203
+ Female,60,0,0,0,0,1,1,1,0,0,1,1,0,1,1
204
+ Male,74,1,0,0,0,1,1,1,1,1,0,0,1,1,1
205
+ Female,65,0,1,1,1,1,0,1,1,1,1,1,1,0,1
206
+ Male,79,1,0,0,0,1,1,1,0,1,1,1,1,1,1
207
+ Male,62,0,1,1,1,0,1,0,0,0,0,0,1,1,1
208
+ Female,71,1,1,1,0,0,0,1,0,1,1,1,0,1,1
209
+ Male,63,1,0,0,1,0,0,0,0,0,1,1,0,0,0
210
+ Male,67,0,1,1,1,0,1,1,0,0,1,0,1,0,1
211
+ Male,55,1,0,0,0,0,1,1,1,1,1,1,0,1,1
212
+ Male,54,1,0,0,0,0,0,1,1,1,1,0,0,0,1
213
+ Female,77,0,1,1,1,1,1,1,1,0,1,1,1,1,1
214
+ Male,58,1,0,0,0,0,1,1,1,1,1,1,0,1,1
215
+ Male,64,1,1,1,1,1,0,0,0,1,0,0,1,1,1
216
+ Female,61,1,1,1,1,0,1,0,0,0,1,1,1,1,1
217
+ Female,62,0,0,0,0,1,1,0,0,0,0,1,0,0,0
218
+ Female,67,1,1,1,1,1,1,0,0,0,0,1,1,0,1
219
+ Female,56,1,1,1,1,1,0,1,1,1,0,0,1,1,1
220
+ Female,70,0,0,0,1,1,0,1,0,1,1,1,0,0,1
221
+ Male,70,0,0,0,0,1,1,1,0,1,1,1,0,1,1
222
+ Female,57,0,0,1,1,1,1,1,1,1,0,1,1,1,1
223
+ Male,61,0,0,1,1,1,0,0,0,1,0,0,0,0,0
224
+ Female,77,0,0,0,1,1,1,1,1,1,0,0,0,1,1
225
+ Male,63,1,1,1,0,1,1,1,1,0,0,1,0,0,1
226
+ Female,62,1,0,0,1,0,1,1,1,1,1,0,1,1,1
227
+ Male,59,1,0,0,1,1,1,1,1,1,1,1,1,1,1
228
+ Female,70,0,1,0,1,1,1,1,0,1,1,0,0,0,1
229
+ Male,71,0,1,1,0,1,0,1,1,1,1,0,1,0,1
230
+ Female,56,0,1,0,1,0,1,0,0,0,1,1,0,1,1
231
+ Male,57,0,0,0,0,1,0,1,0,1,1,1,1,1,1
232
+ Male,78,0,1,0,1,1,1,0,1,0,0,1,1,1,1
233
+ Male,64,1,1,1,1,0,1,1,0,1,1,1,0,1,1
234
+ Male,62,0,1,0,1,1,1,1,1,1,1,0,1,1,1
235
+ Female,49,0,1,1,0,0,0,0,0,0,1,0,0,0,1
236
+ Male,77,0,1,0,1,0,1,1,1,1,1,0,0,0,1
237
+ Female,64,0,0,1,0,1,0,1,1,1,0,0,1,0,1
238
+ Male,63,0,1,0,1,0,1,1,1,1,1,1,0,1,1
239
+ Female,54,1,1,1,1,1,1,0,1,0,1,0,1,1,1
240
+ Female,38,0,1,0,0,1,1,1,1,0,1,1,0,1,1
241
+ Female,75,0,1,1,1,0,0,1,1,0,1,0,1,0,1
242
+ Female,70,1,0,0,1,1,0,1,0,0,0,1,0,0,1
243
+ Male,59,1,0,0,0,0,1,1,1,1,1,1,0,1,1
244
+ Male,77,1,1,1,0,1,0,1,1,0,0,0,1,1,1
245
+ Male,61,0,0,1,0,1,1,0,1,1,1,1,1,0,1
246
+ Female,64,1,1,1,0,0,1,1,0,0,0,1,0,1,1
247
+ Male,59,0,0,0,1,0,1,0,1,0,0,1,0,1,0
248
+ Female,71,1,1,1,0,1,0,0,1,1,0,1,1,1,1
249
+ Male,67,0,1,0,0,0,1,0,1,1,1,1,0,0,1
250
+ Female,64,1,1,0,1,1,1,1,1,0,1,1,0,0,1
251
+ Male,68,1,0,1,0,0,1,0,0,0,0,0,0,0,0
252
+ Male,69,1,1,1,1,0,1,1,0,0,0,1,1,0,1
253
+ Female,64,1,1,1,1,1,1,1,1,0,1,1,1,1,1
254
+ Male,59,0,1,1,1,1,0,1,0,1,0,0,1,1,1
255
+ Female,67,1,1,1,1,0,1,0,1,0,1,1,1,0,1
256
+ Male,74,0,1,0,0,1,1,1,1,1,1,1,0,1,1
257
+ Female,77,0,0,0,1,1,1,0,0,1,1,1,1,0,1
258
+ Male,60,1,0,0,0,0,1,1,1,1,1,1,0,1,1
259
+ Male,64,1,0,0,0,0,0,1,1,1,1,0,0,1,1
260
+ Male,70,1,0,1,0,0,1,1,0,1,1,1,0,1,1
261
+ Male,58,0,0,0,1,0,1,1,1,1,0,0,1,0,1
262
+ Female,59,0,1,1,1,1,1,0,1,1,0,0,0,0,1
263
+ Male,39,1,0,0,1,0,1,1,1,1,0,1,0,1,1
264
+ Female,67,0,1,0,0,0,0,0,1,0,1,1,0,0,0
265
+ Female,71,0,1,0,0,1,1,1,1,0,1,1,0,0,1
266
+ Male,70,1,0,0,0,0,1,0,1,1,1,1,0,1,1
267
+ Female,60,1,1,1,1,0,1,1,0,0,0,1,1,0,1
268
+ Female,55,1,0,1,0,0,1,0,0,0,0,0,0,0,0
269
+ Male,60,1,1,1,1,1,0,1,0,1,0,0,1,1,1
270
+ Female,55,1,1,1,1,1,1,0,1,0,1,1,1,0,1
271
+ Male,55,0,0,0,0,1,1,1,1,1,1,1,0,1,1
272
+ Female,70,1,0,0,0,0,1,0,0,0,0,1,0,0,0
273
+ Male,63,1,0,0,0,0,1,1,1,1,1,1,0,1,1
274
+ Male,64,1,0,0,0,0,0,1,1,1,1,0,0,1,0
275
+ Female,59,0,1,1,1,1,1,1,1,0,1,1,1,0,1
276
+ Male,56,1,0,0,0,1,0,1,1,1,1,1,0,1,1
277
+ Male,64,1,1,1,1,1,0,0,0,1,0,0,1,1,1
278
+ Female,62,1,1,1,1,1,1,0,0,0,1,1,0,0,1
279
+ Female,87,0,0,0,0,1,1,0,0,0,0,1,0,0,0
280
+ Female,77,1,1,1,1,1,1,0,0,0,0,1,1,0,1
281
+ Female,59,0,1,1,1,0,0,1,1,0,1,0,1,0,1
282
+ Female,59,1,0,0,0,1,1,1,0,0,0,1,0,0,0
283
+ Male,55,1,0,0,0,0,1,1,0,0,0,1,0,1,0
284
+ Male,46,0,1,1,0,0,0,0,0,0,0,0,1,1,0
285
+ Male,60,0,1,1,0,0,1,0,1,1,1,1,1,1,1
286
+ Male,58,1,1,1,1,1,0,0,0,1,0,0,1,1,1
287
+ Female,58,1,1,1,1,0,1,0,0,0,1,1,1,0,1
288
+ Female,63,0,0,0,0,1,1,0,0,0,0,1,0,0,0
289
+ Female,51,1,1,1,1,0,1,0,0,0,0,1,1,0,1
290
+ Female,61,0,1,1,1,0,0,1,1,0,1,0,1,0,1
291
+ Female,61,1,0,0,0,1,1,1,0,0,0,1,0,0,1
292
+ Male,76,1,0,0,0,0,1,1,1,1,1,1,0,1,1
293
+ Male,71,1,1,1,0,1,0,1,1,1,1,0,1,1,1
294
+ Male,69,0,0,1,0,0,1,0,1,1,1,1,1,0,1
295
+ Female,56,1,1,1,0,0,1,1,0,0,0,1,0,1,1
296
+ Male,67,0,0,0,1,0,1,0,1,0,1,1,0,1,1
297
+ Female,54,1,1,1,0,1,0,0,1,1,0,1,1,1,1
298
+ Male,63,0,1,0,0,0,1,0,1,1,1,1,0,0,1
299
+ Female,47,1,1,0,1,1,1,1,1,0,1,1,0,0,1
300
+ Male,62,1,0,1,0,0,1,0,1,1,1,1,0,1,1
301
+ Male,65,1,1,1,1,0,1,1,0,0,0,1,1,0,1
302
+ Female,63,1,1,1,1,1,1,1,1,0,1,1,1,1,1
303
+ Male,64,0,1,1,1,0,0,1,0,1,0,0,1,1,1
304
+ Female,65,1,1,1,1,0,1,0,1,0,1,1,1,0,1
305
+ Male,51,0,1,0,0,1,1,1,1,1,1,1,0,1,1
306
+ Female,56,0,0,0,1,1,1,0,0,1,1,1,1,0,1
307
+ Male,70,1,0,0,0,0,1,1,1,1,1,1,0,1,1
308
+ Male,58,1,0,0,0,0,0,1,1,1,1,0,0,1,1
309
+ Male,67,1,0,1,0,0,1,1,0,1,1,1,0,1,1
310
+ Male,62,0,0,0,1,0,1,1,1,1,0,0,1,0,1
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Hanife Kaptan
2
+ # Versions: python==3.11.2, xgboost==2.1.1, streamlit==1.36.0, scikit-learn==1.4.2, pandas==2.0.2
3
+
4
+ import pandas as pd
5
+ from sklearn.compose import ColumnTransformer
6
+ from sklearn.preprocessing import OneHotEncoder, StandardScaler
7
+ from sklearn.pipeline import Pipeline
8
+ from xgboost import XGBClassifier
9
+ import streamlit as st
10
+
11
+ df = pd.read_csv("akcigerKanseri.csv")
12
+
13
+ X = df.drop("lung_cancer", axis=1)
14
+ y = df["lung_cancer"]
15
+
16
+ preprocess = ColumnTransformer(
17
+ transformers = [("cat", OneHotEncoder(), ["gender"]), ("num", (StandardScaler()), ["age"])]
18
+ )
19
+
20
+ my_model = XGBClassifier()
21
+
22
+ pipe = Pipeline(steps=[("preprocessor", preprocess), ("model", my_model)])
23
+ pipe.fit(X, y)
24
+
25
+ def lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
26
+ chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
27
+ coughing, shortness_of_breath, swallowing_difficulty, chest_pain):
28
+ input_data = pd.DataFrame({"gender": [gender],
29
+ "age": [age],
30
+ "smoking": [smoking],
31
+ "yellow_fingers": [yellow_fingers],
32
+ "anxiety": [anxiety],
33
+ "peer_pressure": [peer_pressure],
34
+ "chronic_disease": [chronic_disease],
35
+ "fatigue": [fatigue],
36
+ "allergy": [allergy],
37
+ "wheezing": [wheezing],
38
+ "alcohol_consuming": [alcohol_consuming],
39
+ "coughing": [coughing],
40
+ "shortness_of_breath": [shortness_of_breath],
41
+ "swallowing_difficulty": [swallowing_difficulty],
42
+ "chest_pain": [chest_pain]})
43
+ prediction = pipe.predict(input_data)[0]
44
+ return prediction
45
+
46
+ st.title("Akciğer Kanseri Tespiti :hospital:: @hanifekaptan")
47
+ st.write("Kendinizle ilgili doğru seçenekleri seçiniz.")
48
+ gender = st.radio("Gender", ["Male", "Female"]) # male ve female 1 ve 0 değerlerine dönüştürülecek
49
+ age = st.number_input("Age", 0, 100)
50
+ smoking = st.radio("Smoking", [True, False])
51
+ yellow_fingers = st.radio("Yellow Fingers", [True, False])
52
+ anxiety = st.radio("Anxiety", [True, False])
53
+ peer_pressure = st.radio("peer_pressure", [True, False])
54
+ chronic_disease = st.radio("chronic_disease", [True, False])
55
+ fatigue = st.radio("fatigue", [True, False])
56
+ allergy = st.radio("allergy", [True, False])
57
+ wheezing = st.radio("wheezing", [True, False])
58
+ alcohol_consuming = st.radio("alcohol_consuming", [True, False])
59
+ coughing = st.radio("coughing", [True, False])
60
+ shortness_of_breath = st.radio("shortness_of_breath", [True, False])
61
+ swallowing_difficulty = st.radio("swallowing_difficulty", [True, False])
62
+ chest_pain = st.radio("chest_pain", [True, False])
63
+
64
+ if st.button("Predict"):
65
+ pred = lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
66
+ chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
67
+ coughing, shortness_of_breath, swallowing_difficulty, chest_pain)
68
+ if pred == 1:
69
+ st.write("Result: Positive")
70
+ elif pred == 0:
71
+ st.write("Result: Negative")
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit == 1.36.0
2
+ python == 3.11.2
3
+ xgboost == 2.1.1
4
+ scikit-learn == 1.4.2
5
+ pandas == 2.0.2