Spaces:
Sleeping
Sleeping
hç
commited on
Upload 7 files
Browse files- Codenames AI Assistant .ipynb +314 -0
- NOte.txt +35 -0
- README.md +42 -20
- app.py +55 -0
- config.json +14 -0
- model.txt +3 -0
- sample_input.json +0 -0
Codenames AI Assistant .ipynb
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "9b7d6163-bb7b-44f9-8ca2-fb20e588efac",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"Collecting gensim\n",
|
| 14 |
+
" Using cached gensim-4.3.3-cp312-cp312-win_amd64.whl.metadata (8.2 kB)\n",
|
| 15 |
+
"Requirement already satisfied: numpy in c:\\programdata\\anaconda3\\lib\\site-packages (2.1.3)\n",
|
| 16 |
+
"Collecting numpy\n",
|
| 17 |
+
" Using cached numpy-1.26.4-cp312-cp312-win_amd64.whl.metadata (61 kB)\n",
|
| 18 |
+
"Collecting scipy<1.14.0,>=1.7.0 (from gensim)\n",
|
| 19 |
+
" Using cached scipy-1.13.1-cp312-cp312-win_amd64.whl.metadata (60 kB)\n",
|
| 20 |
+
"Collecting smart-open>=1.8.1 (from gensim)\n",
|
| 21 |
+
" Using cached smart_open-7.1.0-py3-none-any.whl.metadata (24 kB)\n",
|
| 22 |
+
"Requirement already satisfied: wrapt in c:\\programdata\\anaconda3\\lib\\site-packages (from smart-open>=1.8.1->gensim) (1.17.0)\n",
|
| 23 |
+
"Using cached gensim-4.3.3-cp312-cp312-win_amd64.whl (24.0 MB)\n",
|
| 24 |
+
"Using cached numpy-1.26.4-cp312-cp312-win_amd64.whl (15.5 MB)\n",
|
| 25 |
+
"Downloading scipy-1.13.1-cp312-cp312-win_amd64.whl (45.9 MB)\n",
|
| 26 |
+
" ---------------------------------------- 0.0/45.9 MB ? eta -:--:--\n",
|
| 27 |
+
" ---------------------------------------- 0.0/45.9 MB ? eta -:--:--\n",
|
| 28 |
+
" ---------------------------------------- 0.5/45.9 MB 3.4 MB/s eta 0:00:14\n",
|
| 29 |
+
" --------------------------------------- 0.8/45.9 MB 2.0 MB/s eta 0:00:23\n",
|
| 30 |
+
" - -------------------------------------- 1.3/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
| 31 |
+
" - -------------------------------------- 1.8/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
| 32 |
+
" -- ------------------------------------- 2.4/45.9 MB 2.2 MB/s eta 0:00:20\n",
|
| 33 |
+
" -- ------------------------------------- 2.6/45.9 MB 2.3 MB/s eta 0:00:20\n",
|
| 34 |
+
" -- ------------------------------------- 3.1/45.9 MB 2.2 MB/s eta 0:00:20\n",
|
| 35 |
+
" --- ------------------------------------ 3.7/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 36 |
+
" --- ------------------------------------ 4.2/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 37 |
+
" --- ------------------------------------ 4.5/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 38 |
+
" ---- ----------------------------------- 5.0/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 39 |
+
" ---- ----------------------------------- 5.5/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 40 |
+
" ----- ---------------------------------- 5.8/45.9 MB 2.2 MB/s eta 0:00:19\n",
|
| 41 |
+
" ----- ---------------------------------- 6.3/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
| 42 |
+
" ----- ---------------------------------- 6.8/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
| 43 |
+
" ------ --------------------------------- 7.3/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
| 44 |
+
" ------ --------------------------------- 7.6/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
| 45 |
+
" ------- -------------------------------- 8.1/45.9 MB 2.2 MB/s eta 0:00:18\n",
|
| 46 |
+
" ------- -------------------------------- 8.7/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
| 47 |
+
" ------- -------------------------------- 9.2/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
| 48 |
+
" -------- ------------------------------- 9.4/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
| 49 |
+
" -------- ------------------------------- 10.0/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
| 50 |
+
" --------- ------------------------------ 10.5/45.9 MB 2.2 MB/s eta 0:00:17\n",
|
| 51 |
+
" --------- ------------------------------ 10.7/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 52 |
+
" --------- ------------------------------ 11.3/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 53 |
+
" ---------- ----------------------------- 11.8/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 54 |
+
" ---------- ----------------------------- 12.3/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 55 |
+
" ---------- ----------------------------- 12.6/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 56 |
+
" ----------- ---------------------------- 13.1/45.9 MB 2.1 MB/s eta 0:00:16\n",
|
| 57 |
+
" ----------- ---------------------------- 13.4/45.9 MB 2.2 MB/s eta 0:00:16\n",
|
| 58 |
+
" ------------ --------------------------- 13.9/45.9 MB 2.1 MB/s eta 0:00:15\n",
|
| 59 |
+
" ------------ --------------------------- 14.4/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
| 60 |
+
" ------------ --------------------------- 14.7/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
| 61 |
+
" ------------- -------------------------- 15.2/45.9 MB 2.2 MB/s eta 0:00:15\n",
|
| 62 |
+
" ------------- -------------------------- 15.7/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 63 |
+
" ------------- -------------------------- 16.0/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 64 |
+
" -------------- ------------------------- 16.5/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 65 |
+
" -------------- ------------------------- 17.0/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 66 |
+
" --------------- ------------------------ 17.3/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 67 |
+
" --------------- ------------------------ 17.8/45.9 MB 2.2 MB/s eta 0:00:14\n",
|
| 68 |
+
" --------------- ------------------------ 18.4/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
| 69 |
+
" ---------------- ----------------------- 18.9/45.9 MB 2.1 MB/s eta 0:00:13\n",
|
| 70 |
+
" ---------------- ----------------------- 19.1/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
| 71 |
+
" ----------------- ---------------------- 19.7/45.9 MB 2.2 MB/s eta 0:00:13\n",
|
| 72 |
+
" ----------------- ---------------------- 20.2/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
| 73 |
+
" ----------------- ---------------------- 20.4/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
| 74 |
+
" ------------------ --------------------- 21.0/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
| 75 |
+
" ------------------ --------------------- 21.5/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
| 76 |
+
" ------------------ --------------------- 21.8/45.9 MB 2.2 MB/s eta 0:00:12\n",
|
| 77 |
+
" ------------------- -------------------- 22.3/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
| 78 |
+
" ------------------- -------------------- 22.8/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
| 79 |
+
" -------------------- ------------------- 23.3/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
| 80 |
+
" -------------------- ------------------- 23.6/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
| 81 |
+
" --------------------- ------------------ 24.1/45.9 MB 2.2 MB/s eta 0:00:11\n",
|
| 82 |
+
" --------------------- ------------------ 24.6/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
| 83 |
+
" --------------------- ------------------ 24.9/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
| 84 |
+
" ---------------------- ----------------- 25.4/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
| 85 |
+
" ---------------------- ----------------- 26.0/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
| 86 |
+
" ---------------------- ----------------- 26.2/45.9 MB 2.2 MB/s eta 0:00:10\n",
|
| 87 |
+
" ----------------------- ---------------- 26.7/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
| 88 |
+
" ----------------------- ---------------- 27.3/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
| 89 |
+
" ----------------------- ---------------- 27.5/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
| 90 |
+
" ------------------------ --------------- 27.8/45.9 MB 2.2 MB/s eta 0:00:09\n",
|
| 91 |
+
" ------------------------ --------------- 28.3/45.9 MB 2.1 MB/s eta 0:00:09\n",
|
| 92 |
+
" ------------------------- -------------- 28.8/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 93 |
+
" ------------------------- -------------- 29.1/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 94 |
+
" ------------------------- -------------- 29.6/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 95 |
+
" -------------------------- ------------- 29.9/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 96 |
+
" -------------------------- ------------- 30.4/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 97 |
+
" -------------------------- ------------- 30.7/45.9 MB 2.1 MB/s eta 0:00:08\n",
|
| 98 |
+
" --------------------------- ------------ 31.2/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
| 99 |
+
" --------------------------- ------------ 31.7/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
| 100 |
+
" --------------------------- ------------ 32.0/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
| 101 |
+
" ---------------------------- ----------- 32.2/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
| 102 |
+
" ---------------------------- ----------- 32.8/45.9 MB 2.1 MB/s eta 0:00:07\n",
|
| 103 |
+
" ----------------------------- ---------- 33.3/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 104 |
+
" ----------------------------- ---------- 33.6/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 105 |
+
" ----------------------------- ---------- 34.1/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 106 |
+
" ----------------------------- ---------- 34.3/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 107 |
+
" ------------------------------ --------- 34.6/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 108 |
+
" ------------------------------ --------- 35.1/45.9 MB 2.1 MB/s eta 0:00:06\n",
|
| 109 |
+
" ------------------------------- -------- 35.7/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 110 |
+
" ------------------------------- -------- 35.9/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 111 |
+
" ------------------------------- -------- 36.2/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 112 |
+
" ------------------------------- -------- 36.7/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 113 |
+
" -------------------------------- ------- 37.0/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 114 |
+
" -------------------------------- ------- 37.5/45.9 MB 2.1 MB/s eta 0:00:05\n",
|
| 115 |
+
" --------------------------------- ------ 38.0/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
| 116 |
+
" --------------------------------- ------ 38.3/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
| 117 |
+
" --------------------------------- ------ 38.8/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
| 118 |
+
" ---------------------------------- ----- 39.1/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
| 119 |
+
" ---------------------------------- ----- 39.6/45.9 MB 2.1 MB/s eta 0:00:04\n",
|
| 120 |
+
" ---------------------------------- ----- 39.8/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
| 121 |
+
" ----------------------------------- ---- 40.4/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
| 122 |
+
" ----------------------------------- ---- 40.6/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
| 123 |
+
" ----------------------------------- ---- 41.2/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
| 124 |
+
" ------------------------------------ --- 41.4/45.9 MB 2.1 MB/s eta 0:00:03\n",
|
| 125 |
+
" ------------------------------------ --- 41.9/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 126 |
+
" ------------------------------------ --- 42.2/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 127 |
+
" ------------------------------------- -- 42.7/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 128 |
+
" ------------------------------------- -- 43.0/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 129 |
+
" ------------------------------------- -- 43.3/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 130 |
+
" -------------------------------------- - 43.8/45.9 MB 2.1 MB/s eta 0:00:02\n",
|
| 131 |
+
" -------------------------------------- - 44.3/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
| 132 |
+
" -------------------------------------- - 44.6/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
| 133 |
+
" --------------------------------------- 45.1/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
| 134 |
+
" --------------------------------------- 45.4/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
| 135 |
+
" --------------------------------------- 45.9/45.9 MB 2.1 MB/s eta 0:00:01\n",
|
| 136 |
+
" ---------------------------------------- 45.9/45.9 MB 2.0 MB/s eta 0:00:00\n",
|
| 137 |
+
"Downloading smart_open-7.1.0-py3-none-any.whl (61 kB)\n",
|
| 138 |
+
"Installing collected packages: smart-open, numpy, scipy, gensim\n",
|
| 139 |
+
" Attempting uninstall: numpy\n",
|
| 140 |
+
" Found existing installation: numpy 2.1.3\n",
|
| 141 |
+
" Uninstalling numpy-2.1.3:\n",
|
| 142 |
+
" Successfully uninstalled numpy-2.1.3\n",
|
| 143 |
+
" Attempting uninstall: scipy\n",
|
| 144 |
+
" Found existing installation: scipy 1.15.1\n",
|
| 145 |
+
" Uninstalling scipy-1.15.1:\n",
|
| 146 |
+
" Successfully uninstalled scipy-1.15.1\n",
|
| 147 |
+
"Successfully installed gensim-4.3.3 numpy-1.26.4 scipy-1.13.1 smart-open-7.1.0\n"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"name": "stderr",
|
| 152 |
+
"output_type": "stream",
|
| 153 |
+
"text": [
|
| 154 |
+
" WARNING: Failed to remove contents in a temporary directory 'C:\\Users\\LGR\\AppData\\Local\\Temp\\pip-uninstall-bzrgm1pe'.\n",
|
| 155 |
+
" You can safely remove it manually.\n",
|
| 156 |
+
" WARNING: Failed to remove contents in a temporary directory 'C:\\ProgramData\\anaconda3\\Lib\\site-packages\\~~mpy.libs'.\n",
|
| 157 |
+
" You can safely remove it manually.\n",
|
| 158 |
+
"ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
| 159 |
+
"tensorflow-intel 2.18.0 requires ml-dtypes<0.5.0,>=0.4.0, but you have ml-dtypes 0.5.1 which is incompatible.\n",
|
| 160 |
+
"tensorflow-intel 2.18.0 requires tensorboard<2.19,>=2.18, but you have tensorboard 2.19.0 which is incompatible.\n",
|
| 161 |
+
"bokeh 3.6.2 requires tornado>=6.2, but you have tornado 6.1 which is incompatible.\n",
|
| 162 |
+
"scikit-image 0.25.0 requires pillow>=10.1, but you have pillow 9.5.0 which is incompatible.\n"
|
| 163 |
+
]
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"source": [
|
| 167 |
+
"!pip install gensim numpy"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": 2,
|
| 173 |
+
"id": "a6600c17-fb8e-4e8c-a6a1-d25084447144",
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"import gensim.downloader as api\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"# Bu satır modeli ilk kez indirir ve önbelleğe alır\n",
|
| 180 |
+
"model = api.load(\"word2vec-google-news-300\")"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"cell_type": "code",
|
| 185 |
+
"execution_count": 3,
|
| 186 |
+
"id": "6d55403c-62fc-4d07-9306-ca11593bcaa2",
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [
|
| 189 |
+
{
|
| 190 |
+
"data": {
|
| 191 |
+
"text/plain": [
|
| 192 |
+
"0.05226295"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
"execution_count": 3,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"output_type": "execute_result"
|
| 198 |
+
}
|
| 199 |
+
],
|
| 200 |
+
"source": [
|
| 201 |
+
"# En benzer kelimeleri getir\n",
|
| 202 |
+
"model.most_similar(\"spy\")\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# İki kelime arasındaki benzerlik\n",
|
| 205 |
+
"model.similarity(\"dog\", \"cat\")\n",
|
| 206 |
+
"model.similarity(\"dog\", \"explosion\")"
|
| 207 |
+
]
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"cell_type": "markdown",
|
| 211 |
+
"id": "e56a26c9-a705-4e54-83e2-331e03586f36",
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"source": [
|
| 214 |
+
"AI Strateji Fonksiyonu: oner_ipucu()\n",
|
| 215 |
+
"Bu fonksiyon:\n",
|
| 216 |
+
"\n",
|
| 217 |
+
"Hedef kelimelere yakın\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"Yasaklı kelimelere uzak\n",
|
| 220 |
+
"olan en iyi ipucunu seçecek."
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "code",
|
| 225 |
+
"execution_count": 4,
|
| 226 |
+
"id": "8d01664b-2ca0-407c-a51c-55f19ec5615f",
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"outputs": [],
|
| 229 |
+
"source": [
|
| 230 |
+
"def oner_ipucu(hedefler, yasaklar, model, aday_kelimeler=None, top_n=1):\n",
|
| 231 |
+
" from numpy import mean\n",
|
| 232 |
+
"\n",
|
| 233 |
+
" # Hedef ve yasaklı kelimeleri dışlayacağımız bir set\n",
|
| 234 |
+
" filtre = set(hedefler + yasaklar)\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" if aday_kelimeler is None:\n",
|
| 237 |
+
" aday_kelimeler = list(model.key_to_index.keys())\n",
|
| 238 |
+
"\n",
|
| 239 |
+
" en_iyi_ipucu = None\n",
|
| 240 |
+
" en_iyi_skor = -float(\"inf\")\n",
|
| 241 |
+
"\n",
|
| 242 |
+
" for kelime in aday_kelimeler:\n",
|
| 243 |
+
" if kelime in filtre:\n",
|
| 244 |
+
" continue # hedef ya da yasaklılardan biri zaten, geç\n",
|
| 245 |
+
"\n",
|
| 246 |
+
" try:\n",
|
| 247 |
+
" hedef_skor = mean([model.similarity(kelime, h) for h in hedefler if h in model])\n",
|
| 248 |
+
" yasak_skor = mean([model.similarity(kelime, y) for y in yasaklar if y in model])\n",
|
| 249 |
+
" toplam_skor = hedef_skor - yasak_skor\n",
|
| 250 |
+
"\n",
|
| 251 |
+
" if toplam_skor > en_iyi_skor:\n",
|
| 252 |
+
" en_iyi_skor = toplam_skor\n",
|
| 253 |
+
" en_iyi_ipucu = kelime\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" except KeyError:\n",
|
| 256 |
+
" continue\n",
|
| 257 |
+
"\n",
|
| 258 |
+
" return en_iyi_ipucu\n",
|
| 259 |
+
"\n"
|
| 260 |
+
]
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"cell_type": "code",
|
| 264 |
+
"execution_count": 5,
|
| 265 |
+
"id": "a24840d8-ecfe-4119-a25a-514e9ec42a55",
|
| 266 |
+
"metadata": {},
|
| 267 |
+
"outputs": [
|
| 268 |
+
{
|
| 269 |
+
"name": "stdout",
|
| 270 |
+
"output_type": "stream",
|
| 271 |
+
"text": [
|
| 272 |
+
"🔍 Geliştirilmiş Önerilen ipucu: cats\n"
|
| 273 |
+
]
|
| 274 |
+
}
|
| 275 |
+
],
|
| 276 |
+
"source": [
|
| 277 |
+
"hedefler = [\"dog\", \"cat\", \"fish\"]\n",
|
| 278 |
+
"yasaklar = [\"bomb\", \"knife\", \"gun\"]\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"ipucu = oner_ipucu(hedefler, yasaklar, model)\n",
|
| 281 |
+
"print(\"🔍 Geliştirilmiş Önerilen ipucu:\", ipucu)\n"
|
| 282 |
+
]
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"cell_type": "code",
|
| 286 |
+
"execution_count": null,
|
| 287 |
+
"id": "b56df5e1-eb56-4a4b-83a4-172476551353",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": []
|
| 291 |
+
}
|
| 292 |
+
],
|
| 293 |
+
"metadata": {
|
| 294 |
+
"kernelspec": {
|
| 295 |
+
"display_name": "Python 3 (ipykernel)",
|
| 296 |
+
"language": "python",
|
| 297 |
+
"name": "python3"
|
| 298 |
+
},
|
| 299 |
+
"language_info": {
|
| 300 |
+
"codemirror_mode": {
|
| 301 |
+
"name": "ipython",
|
| 302 |
+
"version": 3
|
| 303 |
+
},
|
| 304 |
+
"file_extension": ".py",
|
| 305 |
+
"mimetype": "text/x-python",
|
| 306 |
+
"name": "python",
|
| 307 |
+
"nbconvert_exporter": "python",
|
| 308 |
+
"pygments_lexer": "ipython3",
|
| 309 |
+
"version": "3.12.9"
|
| 310 |
+
}
|
| 311 |
+
},
|
| 312 |
+
"nbformat": 4,
|
| 313 |
+
"nbformat_minor": 5
|
| 314 |
+
}
|
NOte.txt
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Proje Özeti: Codenames AI Assistant
|
| 2 |
+
Oyunda bir “spymaster” olarak çalışan yapay zeka modeli, elindeki kelimelere bakarak takımına ipuçları (tek bir kelime) vermeye çalışır. Amaç:
|
| 3 |
+
🔹 Hedef kelimelerle ilişkili bir ipucu bulmak
|
| 4 |
+
🔹 Rakip veya yasak kelimelere yaklaşmamak
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
💡 Teknik Bileşenler:
|
| 10 |
+
Bileşen Açıklama
|
| 11 |
+
Embedding Word2Vec / FastText / GloVe
|
| 12 |
+
Benzerlik Ölçümü Cosine Similarity
|
| 13 |
+
Strateji Maksimum hedef benzerliği + minimum rakip/assassin uzaklığı
|
| 14 |
+
Arayüz Streamlit (görsel oyun tahtası + AI önerisi)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
🧠 Yapay Zeka Ne Yapacak?
|
| 19 |
+
Hedef kelimeler listesi verilecek
|
| 20 |
+
|
| 21 |
+
Yasaklı kelimeler (rakip + assassin) de belirtilecek
|
| 22 |
+
|
| 23 |
+
Model, embedding'ler üzerinden tüm kelimeleri tarayacak
|
| 24 |
+
|
| 25 |
+
Hem hedeflere en yakın, hem de yasaklılara en uzak olan en iyi ipucuyu önerecek
|
| 26 |
+
|
| 27 |
+
📂 Başlangıç Planı:
|
| 28 |
+
✅ Proje dosyası oluştur (codenames_ai)
|
| 29 |
+
|
| 30 |
+
Word2Vec vektörleri indir (hazır model)
|
| 31 |
+
|
| 32 |
+
Basit örnekle strateji algoritması geliştir
|
| 33 |
+
|
| 34 |
+
Streamlit arayüzü (girdi: hedef + yasaklı kelimeler → çıktı: ipucu)
|
| 35 |
+
|
README.md
CHANGED
|
@@ -1,20 +1,42 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Codenames AI Assistant
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo: red
|
| 6 |
-
sdk:
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: "Codenames AI Assistant"
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
+
tags:
|
| 10 |
+
- nlp
|
| 11 |
+
- word2vec
|
| 12 |
+
- strategy
|
| 13 |
+
- ai
|
| 14 |
+
- streamlit
|
| 15 |
+
- game
|
| 16 |
+
license: mit
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# 🧠 Codenames AI Assistant
|
| 20 |
+
|
| 21 |
+
Bu proje, **Codenames** oyununda hedef kelimelere en uygun **tek kelimelik ipucu**yu bulmaya çalışan bir yapay zeka strateji aracıdır.
|
| 22 |
+
Word2Vec modeli ile anlamsal benzerlik hesaplanır, hedeflere yakın, yasaklara uzak en iyi kelime önerilir.
|
| 23 |
+
|
| 24 |
+
## 🔍 Kullanılan Teknikler
|
| 25 |
+
|
| 26 |
+
- Gensim ile önceden eğitilmiş `word2vec-google-news-300`
|
| 27 |
+
- Cosine benzerliği
|
| 28 |
+
- Stratejik kelime seçimi
|
| 29 |
+
|
| 30 |
+
## 🧩 Nasıl Çalışır?
|
| 31 |
+
|
| 32 |
+
- Hedef ve yasaklı kelimeleri gir
|
| 33 |
+
- AI, en alakalı ve güvenli kelimeyi önerir
|
| 34 |
+
- Model eğitimi yoktur (hazır embedding kullanılır)
|
| 35 |
+
|
| 36 |
+
## 🧠 Örnek
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
hedefler = ["dog", "cat", "fish"]
|
| 40 |
+
yasaklar = ["bomb", "knife", "gun"]
|
| 41 |
+
ipucu = oner_ipucu(hedefler, yasaklar, model)
|
| 42 |
+
print(ipucu) # animal gibi bir sonuç dönebilir
|
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import gensim.downloader as api
|
| 3 |
+
import numpy as np
|
| 4 |
+
import string
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
# 🔹 AI ipucu önerici
|
| 8 |
+
def oner_ipucu(hedefler, yasaklar, model, aday_kelimeler=None):
|
| 9 |
+
filtre = set(hedefler + yasaklar)
|
| 10 |
+
if aday_kelimeler is None:
|
| 11 |
+
aday_kelimeler = list(model.key_to_index.keys())
|
| 12 |
+
|
| 13 |
+
en_iyi_ipucu = None
|
| 14 |
+
en_iyi_skor = -float("inf")
|
| 15 |
+
|
| 16 |
+
for kelime in aday_kelimeler:
|
| 17 |
+
if kelime in filtre:
|
| 18 |
+
continue
|
| 19 |
+
try:
|
| 20 |
+
hedef_skor = np.mean([model.similarity(kelime, h) for h in hedefler if h in model])
|
| 21 |
+
yasak_skor = np.mean([model.similarity(kelime, y) for y in yasaklar if y in model])
|
| 22 |
+
toplam_skor = hedef_skor - yasak_skor
|
| 23 |
+
if toplam_skor > en_iyi_skor:
|
| 24 |
+
en_iyi_skor = toplam_skor
|
| 25 |
+
en_iyi_ipucu = kelime
|
| 26 |
+
except KeyError:
|
| 27 |
+
continue
|
| 28 |
+
|
| 29 |
+
return en_iyi_ipucu
|
| 30 |
+
|
| 31 |
+
# 🧠 Word2Vec modeli yükle (ilk seferde indirir)
|
| 32 |
+
@st.cache_resource
|
| 33 |
+
def load_model():
|
| 34 |
+
return api.load("word2vec-google-news-300")
|
| 35 |
+
|
| 36 |
+
model = load_model()
|
| 37 |
+
|
| 38 |
+
# 🎯 Uygulama Başlığı
|
| 39 |
+
st.title("🧠 Codenames AI Assistant")
|
| 40 |
+
st.subheader("💡 Yapay Zeka ile Stratejik İpucu Önerici")
|
| 41 |
+
|
| 42 |
+
# 🎯 Girdiler
|
| 43 |
+
hedef_input = st.text_input("🎯 Hedef kelimeler (virgülle ayırın)", "dog, cat, fish")
|
| 44 |
+
yasak_input = st.text_input("⛔ Yasaklı kelimeler (virgülle ayırın)", "bomb, knife, gun")
|
| 45 |
+
|
| 46 |
+
# Buton
|
| 47 |
+
if st.button("🔍 En iyi ipucuyu öner"):
|
| 48 |
+
hedefler = [w.strip().lower() for w in hedef_input.split(",")]
|
| 49 |
+
yasaklar = [w.strip().lower() for w in yasak_input.split(",")]
|
| 50 |
+
|
| 51 |
+
ipucu = oner_ipucu(hedefler, yasaklar, model)
|
| 52 |
+
if ipucu:
|
| 53 |
+
st.success(f"🎯 Önerilen İpucu: **{ipucu}**")
|
| 54 |
+
else:
|
| 55 |
+
st.error("Uygun ipucu bulunamadı. Kelimeleri kontrol edin.")
|
config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```json
|
| 2 |
+
{
|
| 3 |
+
"model_type": "embedding",
|
| 4 |
+
"library_name": "gensim",
|
| 5 |
+
"pipeline_tag": "text-classification",
|
| 6 |
+
"tags": [
|
| 7 |
+
"nlp",
|
| 8 |
+
"word2vec",
|
| 9 |
+
"streamlit",
|
| 10 |
+
"codenames",
|
| 11 |
+
"game",
|
| 12 |
+
"strategy"
|
| 13 |
+
]
|
| 14 |
+
}
|
model.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model internetten yüklenir.
|
| 2 |
+
import gensim.downloader as api
|
| 3 |
+
model = api.load("word2vec-google-news-300")
|
sample_input.json
ADDED
|
File without changes
|