Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,152 @@
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x * x)
|
|
|
1 |
+
# This file is .....
|
2 |
+
# Author: Hanbin Wang
|
3 |
+
# Date: 2023/4/18
|
4 |
+
import transformers
|
5 |
import streamlit as st
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from transformers import RobertaTokenizer, T5ForConditionalGeneration
|
9 |
+
from transformers import pipeline
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def get_model(model_path):
|
13 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_path)
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
15 |
+
model.eval()
|
16 |
+
return tokenizer, model
|
17 |
+
|
18 |
+
|
19 |
+
def main():
|
20 |
+
# `st.set_page_config` is used to display the default layout width, the title of the app, and the emoticon in the browser tab.
|
21 |
+
|
22 |
+
st.set_page_config(
|
23 |
+
layout="centered", page_title="MaMaL-Sum Demo(代码摘要)", page_icon="❄️"
|
24 |
+
)
|
25 |
+
|
26 |
+
c1, c2 ,c3 = st.columns([0.32, 2,0.5])
|
27 |
+
|
28 |
+
# The snowflake logo will be displayed in the first column, on the left.
|
29 |
+
|
30 |
+
with c1:
|
31 |
+
st.image(
|
32 |
+
"./panda27.png",
|
33 |
+
width=100,
|
34 |
+
)
|
35 |
+
|
36 |
+
# The heading will be on the right.
|
37 |
+
|
38 |
+
with c2:
|
39 |
+
st.caption("")
|
40 |
+
st.title("MaMaL-Sum(代码摘要)")
|
41 |
+
|
42 |
+
|
43 |
+
############ SIDEBAR CONTENT ############
|
44 |
+
|
45 |
+
st.sidebar.image("./panda27.png",width=270)
|
46 |
+
|
47 |
+
st.sidebar.markdown("---")
|
48 |
+
|
49 |
+
st.sidebar.write(
|
50 |
+
"""
|
51 |
+
## 使用方法:
|
52 |
+
在【输入】文本框输入想要解释的代码,点击【摘要】按钮,即会显示代码的自然语言描述。
|
53 |
+
"""
|
54 |
+
)
|
55 |
+
|
56 |
+
st.sidebar.write(
|
57 |
+
"""
|
58 |
+
## 注意事项:
|
59 |
+
1)APP托管在外网上,请确保您可以全局科学上网。
|
60 |
+
|
61 |
+
2)您可以下载[MaMaL-Sum](https://huggingface.co/hanbin/MaMaL-Sum)模型,本地测试。(无需科学上网)
|
62 |
+
"""
|
63 |
+
)
|
64 |
+
# For elements to be displayed in the sidebar, we need to add the sidebar element in the widget.
|
65 |
+
|
66 |
+
# We create a text input field for users to enter their API key.
|
67 |
+
|
68 |
+
# API_KEY = st.sidebar.text_input(
|
69 |
+
# "Enter your HuggingFace API key",
|
70 |
+
# help="Once you created you HuggingFace account, you can get your free API token in your settings page: https://huggingface.co/settings/tokens",
|
71 |
+
# type="password",
|
72 |
+
# )
|
73 |
+
#
|
74 |
+
# # Adding the HuggingFace API inference URL.
|
75 |
+
# API_URL = "https://api-inference.huggingface.co/models/valhalla/distilbart-mnli-12-3"
|
76 |
+
#
|
77 |
+
# # Now, let's create a Python dictionary to store the API headers.
|
78 |
+
# headers = {"Authorization": f"Bearer {API_KEY}"}
|
79 |
+
|
80 |
+
|
81 |
+
st.sidebar.markdown("---")
|
82 |
+
|
83 |
+
|
84 |
+
# Let's add some info about the app to the sidebar.
|
85 |
+
|
86 |
+
st.write(
|
87 |
+
"> **Tip:** 首次运行需要加载模型,可能需要一定的时间!"
|
88 |
+
)
|
89 |
+
|
90 |
+
st.write(
|
91 |
+
"> **Tip:** 左侧栏给出了一些good case 和 bad case,you can try it!"
|
92 |
+
)
|
93 |
+
|
94 |
+
st.sidebar.write(
|
95 |
+
"> **Good case:**"
|
96 |
+
)
|
97 |
+
code_good = """def svg_to_image(string, size=None):
|
98 |
+
if isinstance(string, unicode):
|
99 |
+
string = string.encode('utf-8')
|
100 |
+
renderer = QtSvg.QSvgRenderer(QtCore.QByteArray(string))
|
101 |
+
if not renderer.isValid():
|
102 |
+
raise ValueError('Invalid SVG data.')
|
103 |
+
if size is None:
|
104 |
+
size = renderer.defaultSize()
|
105 |
+
image = QtGui.QImage(size, QtGui.QImage.Format_ARGB32)
|
106 |
+
painter = QtGui.QPainter(image)
|
107 |
+
renderer.render(painter)
|
108 |
+
return image"""
|
109 |
+
st.sidebar.code(code_good, language='python')
|
110 |
+
|
111 |
+
|
112 |
+
st.sidebar.write(
|
113 |
+
"> **Bad cases:**"
|
114 |
+
)
|
115 |
+
code_bad = """from transformers import RobertaTokenizer, T5ForConditionalGeneration
|
116 |
+
from transformers import pipeline"""
|
117 |
+
st.sidebar.code(code_bad, language='python')
|
118 |
+
|
119 |
+
st.sidebar.write(
|
120 |
+
"""
|
121 |
+
App 由 东北大学NLP课小组成员创建, 使用 [Streamlit](https://streamlit.io/)🎈 和 [HuggingFace](https://huggingface.co/inference-api)'s [MaMaL-Sum](https://huggingface.co/hanbin/MaMaL-Sum) 模型.
|
122 |
+
"""
|
123 |
+
)
|
124 |
+
|
125 |
+
# model, tokenizer = load_model("hanbin/MaMaL-Gen")
|
126 |
+
st.write("### 输入:")
|
127 |
+
input = st.text_area("", height=200)
|
128 |
+
button = st.button('摘要')
|
129 |
+
|
130 |
+
tokenizer,model = get_model("hanbin/MaMaL-Sum")
|
131 |
+
|
132 |
+
input_ids = tokenizer(input, return_tensors="pt").input_ids
|
133 |
+
generated_ids = model.generate(input_ids, max_length=100)
|
134 |
+
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
135 |
+
# generator = pipeline('text-generation', model="E:\DenseRetrievalGroup\CodeT5-base")
|
136 |
+
# output = generator(input)
|
137 |
+
# code = '''def hello():
|
138 |
+
# print("Hello, Streamlit!")'''
|
139 |
+
if button:
|
140 |
+
st.write("### 输出:")
|
141 |
+
st.code(output, language='python')
|
142 |
+
else:
|
143 |
+
st.write('')
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
if __name__ == '__main__':
|
149 |
+
|
150 |
+
main()
|
151 |
+
|
152 |
|
|
|
|