xyfcc's picture
Upload folder using huggingface_hub
f631117 verified
import pdb
from functools import reduce, partial
from packaging import version
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.cuda.amp import autocast
from typing import Callable, Literal
try:
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
except ImportError as e:
print(e)
print('flash_attn not installed, disabling Flash Attention')
flash_attn_kvpacked_func = None
flash_attn_func = None
try:
import natten
except ImportError:
natten = None
def checkpoint(function, *args, **kwargs):
kwargs.setdefault("use_reentrant", False)
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
def create_causal_mask(i, j, device):
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.max_seq_len = max_seq_len
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if pos is None:
pos = torch.arange(seq_len, device = device)
if seq_start_pos is not None:
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert (dim % 2) == 0, 'dimension must be divisible by 2'
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
if pos is None:
pos = torch.arange(seq_len, device = device)
if seq_start_pos is not None:
pos = pos - seq_start_pos[..., None]
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward_from_seq_len(self, seq_len):
device = self.inv_freq.device
t = torch.arange(seq_len, device = device)
return self.forward(t)
@autocast(enabled = False)
def forward(self, t):
device = self.inv_freq.device
t = t.to(torch.float32)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim = -1)
if self.scale is None:
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
@autocast(enabled = False)
def apply_rotary_pos_emb(t, freqs, scale = 1):
out_dtype = t.dtype
# cast to float32 if necessary for numerical stability
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
freqs, t = freqs.to(dtype), t.to(dtype)
freqs = freqs[-seq_len:, :]
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
return torch.cat((t, t_unrotated), dim = -1)
# norms
class LayerNorm(nn.Module):
def __init__(self, dim, bias=False, fix_scale=False):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
if fix_scale:
self.register_buffer("gamma", torch.ones(dim))
else:
self.gamma = nn.Parameter(torch.ones(dim))
if bias:
self.beta = nn.Parameter(torch.zeros(dim))
else:
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
use_conv = False,
conv_kernel_size = 3,
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2))
self.use_conv = use_conv
def forward(self, x):
if self.use_conv:
x = rearrange(x, 'b n d -> b d n')
x = self.proj(x)
x = rearrange(x, 'b d n -> b n d')
else:
x = self.proj(x)
x, gate = x.chunk(2, dim = -1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
no_bias = False,
glu = True,
use_conv = False,
conv_kernel_size = 3,
zero_init_output = True,
):
super().__init__()
inner_dim = int(dim * mult)
# Default to SwiGLU
activation = nn.SiLU()
dim_out = dim if dim_out is None else dim_out
if glu:
linear_in = GLU(dim, inner_dim, activation)
else:
linear_in = nn.Sequential(
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
nn.Linear(dim, inner_dim, bias = not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias),
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
activation
)
linear_out = nn.Linear(inner_dim, dim_out, bias = not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias)
# init last linear layer to 0
if zero_init_output:
nn.init.zeros_(linear_out.weight)
if not no_bias:
nn.init.zeros_(linear_out.bias)
self.ff = nn.Sequential(
linear_in,
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
linear_out,
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
)
def forward(self, x):
return self.ff(x)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_heads = 64,
dim_context = None,
causal = False,
zero_init_output=True,
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
natten_kernel_size = None
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.causal = causal
dim_kv = dim_context if dim_context is not None else dim
self.num_heads = dim // dim_heads
self.kv_heads = dim_kv // dim_heads
if dim_context is not None:
self.to_q = nn.Linear(dim, dim, bias=False)
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
else:
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim, bias=False)
if zero_init_output:
nn.init.zeros_(self.to_out.weight)
self.qk_norm = qk_norm
if self.qk_norm == "ln":
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
# Using 1d neighborhood attention
self.natten_kernel_size = natten_kernel_size
if natten_kernel_size is not None:
return
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
# pdb.set_trace()
self.use_fa_flash = False
self.sdp_kwargs = dict(
enable_flash = True,
enable_math = True,
enable_mem_efficient = True
)
def flash_attn(
self,
q,
k,
v,
mask = None,
causal = None
):
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
kv_heads = k.shape[1]
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if heads != kv_heads:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = heads // kv_heads
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
causal = self.causal if causal is None else causal
if q_len == 1 and causal:
causal = False
if mask is not None:
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
# handle kv cache - this should be bypassable in updated flash attention 2
if k_len > q_len and causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
if mask is None:
mask = ~causal_mask
else:
mask = mask & ~causal_mask
causal = False
# manually handle causal mask, if another mask was given
row_is_entirely_masked = None
if mask is not None and causal:
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
mask = mask & ~causal_mask
# protect against an entire row being masked out
row_is_entirely_masked = ~mask.any(dim = -1)
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
causal = False
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
is_causal = causal
)
# for a row that is entirely masked out, should zero out the output of that row token
if row_is_entirely_masked is not None:
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
return out
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
rotary_pos_emb = None,
causal = None
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
kv_input = context if has_context else x
if hasattr(self, 'to_q'):
# Use separate linear projections for q and k/v
q = self.to_q(x)
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
else:
# Use fused linear projection
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# Normalize q and k for cosine sim attention
if self.qk_norm == "l2":
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
elif self.qk_norm == "ln":
q = self.q_norm(q)
k = self.k_norm(k)
if rotary_pos_emb is not None and not has_context:
freqs, _ = rotary_pos_emb
q_dtype = q.dtype
k_dtype = k.dtype
q = q.to(torch.float32)
k = k.to(torch.float32)
freqs = freqs.to(torch.float32)
q = apply_rotary_pos_emb(q, freqs)
k = apply_rotary_pos_emb(k, freqs)
q = q.to(q_dtype)
k = k.to(k_dtype)
input_mask = context_mask
if input_mask is None and not has_context:
input_mask = mask
# determine masking
masks = []
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
if input_mask is not None:
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
# Other masks will be added here later
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
n, device = q.shape[-2], q.device
causal = self.causal if causal is None else causal
if n == 1 and causal:
causal = False
if self.natten_kernel_size is not None:
if natten is None:
raise ImportError('natten not installed, please install natten to use neighborhood attention')
dtype_in = q.dtype
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
attn = natten.functional.natten1dqk(q, k, kernel_size = self.natten_kernel_size, dilation=1)
if final_attn_mask is not None:
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
out = natten.functional.natten1dav(attn, v, kernel_size = self.natten_kernel_size, dilation=1).to(dtype_in)
# Prioritize Flash Attention 2
elif self.use_fa_flash:
# pdb.set_trace()
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
# Flash Attention 2 requires FP16 inputs
fa_dtype_in = q.dtype
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
out = flash_attn_func(q, k, v, causal = causal)
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
# Fall back to PyTorch implementation
elif self.use_pt_flash:
out = self.flash_attn(q, k, v, causal = causal, mask = final_attn_mask)
else:
# Fall back to custom implementation
if h != kv_h:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
scale = 1. / (q.shape[-1] ** 0.5)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if final_attn_mask is not None:
dots = dots.masked_fill(~final_attn_mask, mask_value)
if causal:
causal_mask = self.create_causal_mask(i, j, device = device)
dots = dots.masked_fill(causal_mask, mask_value)
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
attn = attn.type(dtype)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
# merge heads
out = rearrange(out, ' b h n d -> b n (h d)')
# Communicate between heads
# with autocast(enabled = False):
# out_dtype = out.dtype
# out = out.to(torch.float32)
# out = self.to_out(out).to(out_dtype)
out = self.to_out(out)
if mask is not None:
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out
class ConformerModule(nn.Module):
def __init__(
self,
dim,
norm_kwargs = {},
):
super().__init__()
self.dim = dim
self.in_norm = LayerNorm(dim, **norm_kwargs)
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
self.glu = GLU(dim, dim, nn.SiLU())
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
self.swish = nn.SiLU()
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
def forward(self, x):
x = self.in_norm(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.glu(x)
x = rearrange(x, 'b n d -> b d n')
x = self.depthwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.mid_norm(x)
x = self.swish(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv_2(x)
x = rearrange(x, 'b d n -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(
self,
dim,
dim_heads = 64,
cross_attend = False,
dim_context = None,
global_cond_dim = None,
causal = False,
zero_init_branch_outputs = True,
conformer = False,
layer_ix = -1,
remove_norms = False,
attn_kwargs = {},
ff_kwargs = {},
norm_kwargs = {}
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.cross_attend = cross_attend
self.dim_context = dim_context
self.causal = causal
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.self_attn = Attention(
dim,
dim_heads = dim_heads,
causal = causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
### 2. 主要是这边需要修改
if cross_attend:
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.cross_attn = Attention(
dim,
dim_heads = dim_heads,
dim_context=dim_context,
causal = causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
self.layer_ix = layer_ix
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
self.global_cond_dim = global_cond_dim
if global_cond_dim is not None:
self.to_scale_shift_gate = nn.Sequential(
nn.SiLU(),
nn.Linear(global_cond_dim, dim * 6, bias=False)
)
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
def forward(
self,
x,
context = None,
global_cond=None,
mask = None,
context_mask = None,
rotary_pos_emb = None
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
# self-attention with adaLN
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
# feedforward with adaLN
residual = x
x = self.ff_norm(x)
x = x * (1 + scale_ff) + shift_ff
x = self.ff(x)
x = x * torch.sigmoid(1 - gate_ff)
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
x = x + self.ff(self.ff_norm(x))
return x
class ContinuousTransformer(nn.Module):
def __init__(
self,
dim,
depth,
*,
dim_in = None,
dim_out = None,
dim_heads = 64,
cross_attend=False,
cond_token_dim=None,
global_cond_dim=None,
causal=False,
rotary_pos_emb=True,
zero_init_branch_outputs=True,
conformer=False,
use_sinusoidal_emb=False,
use_abs_pos_emb=False,
abs_pos_emb_max_length=10000,
**kwargs
):
super().__init__()
self.dim = dim
self.depth = depth
self.causal = causal
self.layers = nn.ModuleList([])
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
if rotary_pos_emb:
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
else:
self.rotary_pos_emb = None
self.use_sinusoidal_emb = use_sinusoidal_emb
if use_sinusoidal_emb:
self.pos_emb = ScaledSinusoidalEmbedding(dim)
self.use_abs_pos_emb = use_abs_pos_emb
if use_abs_pos_emb:
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
for i in range(depth):
self.layers.append(
TransformerBlock(
dim,
dim_heads = dim_heads,
cross_attend = cross_attend,
dim_context = cond_token_dim,
global_cond_dim = global_cond_dim,
causal = causal,
zero_init_branch_outputs = zero_init_branch_outputs,
conformer=conformer,
layer_ix=i,
**kwargs
)
)
def forward(
self,
x,
mask = None,
prepend_embeds = None,
prepend_mask = None,
global_cond = None,
return_info = False,
**kwargs
):
batch, seq, device = *x.shape[:2], x.device
info = {
"hidden_states": [],
}
x = self.project_in(x)
if prepend_embeds is not None:
prepend_length, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
x = torch.cat((prepend_embeds, x), dim = -2)
if prepend_mask is not None or mask is not None:
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
mask = torch.cat((prepend_mask, mask), dim = -1)
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
else:
rotary_pos_emb = None
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
x = x + self.pos_emb(x)
# Iterate over the transformer layers
for layer in self.layers:
#x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
# pdb.set_trace()
x = checkpoint(layer, x, mask=mask.bool(),rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:
info["hidden_states"].append(x)
x = self.project_out(x)
if return_info:
return x, info
return x