GLM-4-Voice-copy / cosyvoice /flow /stable /stable_diffusion.py
xyfcc's picture
Upload folder using huggingface_hub
f631117 verified
import torch
from torch.nn import functional as F
from .dit import DiffusionTransformer
from .adp import UNet1d
from .sampling import sample
import math
from model.base import BaseModule
import pdb
target_length = 1536
def pad_and_create_mask(matrix, target_length):
T = matrix.shape[2]
if T > target_length:
raise ValueError("The third dimension length %s should not exceed %s" % (T, target_length))
padding_size = target_length - T
padded_matrix = F.pad(matrix, (0, padding_size), "constant", 0)
mask = torch.ones((1, target_length))
mask[:, T:] = 0 # Set the padding part to 0
return padded_matrix.to(matrix.device), mask.to(matrix.device)
class Stable_Diffusion(BaseModule):
def __init__(self, io_channels, input_concat_dim=None, embed_dim=768, depth=24, num_heads=24,
project_cond_tokens=False, transformer_type="continuous_transformer"):
super(Stable_Diffusion, self).__init__()
self.diffusion = DiffusionTransformer(
io_channels=io_channels,
input_concat_dim=input_concat_dim,
embed_dim=embed_dim,
# cond_token_dim=target_length,
depth=depth,
num_heads=num_heads,
project_cond_tokens=project_cond_tokens,
transformer_type=transformer_type,
)
# self.diffusion = UNet1d(
# in_channels=80,
# channels=256,
# resnet_groups=16,
# kernel_multiplier_downsample=2,
# multipliers=[4, 4, 4, 5, 5],
# factors=[1, 2, 2, 4], # θΎ“ε…₯ι•ΏεΊ¦δΈδΈ€θ‡΄ε·η§―ηΌ©ηŸ­
# num_blocks=[2, 2, 2, 2],
# attentions=[1, 3, 3, 3, 3],
# attention_heads=16,
# attention_multiplier=4,
# use_nearest_upsample=False,
# use_skip_scale=True,
# use_context_time=True
# )
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
@torch.no_grad()
def forward(self, mu, mask, n_timesteps):
# pdb.set_trace()
mask = mask.squeeze(1)
noise = torch.randn_like(mu).to(mu.device)
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
# extra_args = {"cross_attn_cond": mu, "cross_attn_cond_mask": mask, "mask": mask}
extra_args = {"input_concat_cond": mu, "mask": mask}
fakes = sample(self.diffusion, noise, n_timesteps, 0, **extra_args)
return fakes
def compute_loss(self, x0, mask, mu):
# pdb.set_trace()
t = self.rng.draw(x0.shape[0])[:, 0].to(x0.device)
alphas, sigmas = torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
alphas = alphas[:, None, None]
sigmas = sigmas[:, None, None]
noise = torch.randn_like(x0)
noised_inputs = x0 * alphas + noise * sigmas
targets = noise * alphas - x0 * sigmas
mask = mask.squeeze(1)
# mu_pad, mu_pad_mask = pad_and_create_mask(mu, target_length)
# output = self.diffusion(noised_inputs, t, cross_attn_cond=mu,
# cross_attn_cond_mask=mask, mask=mask, cfg_dropout_prob=0.1)
# pdb.set_trace()
output = self.diffusion(noised_inputs, # [bs, 80, 229]
t, # (bs,)
input_concat_cond=mu,
mask=mask, # [bs, 229]
cfg_dropout_prob=0.1)
return self.mse_loss(output, targets, mask), output
def mse_loss(self, output, targets, mask):
mse_loss = F.mse_loss(output, targets, reduction='none')
if mask.ndim == 2 and mse_loss.ndim == 3:
mask = mask.unsqueeze(1)
if mask.shape[1] != mse_loss.shape[1]:
mask = mask.repeat(1, mse_loss.shape[1], 1)
mse_loss = mse_loss * mask
mse_loss = mse_loss.mean()
return mse_loss