| import os | |
| import uuid | |
| import joblib | |
| import json | |
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import CommitScheduler | |
| from pathlib import Path | |
| log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
| log_folder = log_file.parent | |
| scheduler = CommitScheduler( | |
| repo_id="machine-failure-logs", | |
| repo_type="dataset", | |
| folder_path=log_folder, | |
| path_in_repo="data", | |
| every=2 | |
| ) | |
| machine_failure_predictor = joblib.load('model.joblib') | |
| air_temperature_input = gr.Number(label='Air temperature [K]') | |
| process_temperature_input = gr.Number(label='Process temperature [K]') | |
| rotational_speed_input = gr.Number(label='Rotational speed [rpm]') | |
| torque_input = gr.Number(label='Torque [Nm]') | |
| tool_wear_input = gr.Number(label='Tool wear [min]') | |
| type_input = gr.Dropdown( | |
| ['L', 'M', 'H'], | |
| label='Type' | |
| ) | |
| model_output = gr.Label(label="Machine failure") | |
| def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): | |
| sample = { | |
| 'Air temperature [K]': air_temperature, | |
| 'Process temperature [K]': process_temperature, | |
| 'Rotational speed [rpm]': rotational_speed, | |
| 'Torque [Nm]': torque, | |
| 'Tool wear [min]': tool_wear, | |
| 'Type': type | |
| } | |
| data_point = pd.DataFrame([sample]) | |
| prediction = machine_failure_predictor.predict(data_point).tolist() | |
| with scheduler.lock: | |
| with log_file.open("a") as f: | |
| f.write(json.dumps( | |
| { | |
| 'Air temperature [K]': air_temperature, | |
| 'Process temperature [K]': process_temperature, | |
| 'Rotational speed [rpm]': rotational_speed, | |
| 'Torque [Nm]': torque, | |
| 'Tool wear [min]': tool_wear, | |
| 'Type': type, | |
| 'prediction': prediction[0] | |
| } | |
| )) | |
| f.write("\n") | |
| return prediction[0] | |
| demo = gr.Interface( | |
| fn=predict_machine_failure, | |
| inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, | |
| torque_input, tool_wear_input, type_input], | |
| outputs=model_output, | |
| title="Hello abstr - Machine Failure Predictor", | |
| description="This API allows you to predict the machine failure status of an equipment", | |
| allow_flagging="auto", | |
| concurrency_limit=8 | |
| ) | |
| demo.queue() | |
| demo.launch(share=False) |