hummingface / app.py
hamidme's picture
app.py
95a367c
raw
history blame
2.29 kB
import os
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
import random
from langchain import HuggingFaceHub
from langchain.callbacks import get_openai_callback
def main():
# ---------------------------- created personal API -----------------------------
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# ------------------ Designing Page ---------------
st.set_page_config(page_title="Ask Your PDF")
st.header("Ask your PDF :")
pdf = st.file_uploader("Upload your File here", type="pdf")
# Check Pdf
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
# Extract pages from pdf
for page in pdf_reader.pages:
text += page.extract_text()
# split into chunks
text_spliter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=0,
length_function=len
)
chunks = text_spliter.split_text(text)
# create embeddings
embedding = HuggingFaceEmbeddings()
knowledge_base = FAISS.from_texts(chunks, embedding)
user_questions = st.text_input("Ask a Question from PDF : ")
if user_questions:
greeting = ["hy", 'hello', 'hey', "hi"]
greet_msg = ["Hello Dear!", 'Hey!', 'Hey Friend!']
if user_questions in greeting:
response = random.choice(greet_msg)
elif user_questions == "by" or user_questions == "bye":
response = "GoodBye Sir!, Have a Nice Day....."
else:
docs = knowledge_base.similarity_search(user_questions)
chain = load_qa_chain(HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.1, "max_length":512}), chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=user_questions)
print(cb)
st.write(response)
if __name__ == "__main__":
main()