Update app.py
Browse files
app.py
CHANGED
@@ -3,22 +3,83 @@ import tensorflow as tf
|
|
3 |
|
4 |
import gradio as gr
|
5 |
|
6 |
-
inception_net = tf.keras.applications.MobileNetV2() # load the model
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
labels = response.text.split("\n")
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
title = "Gradio Image Classifiction + Interpretation Example"
|
24 |
gr.Interface(
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
|
|
|
6 |
|
7 |
+
def classify_image(inp):
|
8 |
+
# Dataset link: https://www.kaggle.com/pranavraikokte/covid19-image-dataset
|
|
|
9 |
|
10 |
+
import tensorflow as tf
|
11 |
+
from tensorflow import keras
|
12 |
+
from tensorflow.keras.models import Sequential
|
13 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
14 |
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
#import app
|
17 |
+
|
18 |
+
|
19 |
+
batch = 4
|
20 |
+
|
21 |
+
generator = ImageDataGenerator(
|
22 |
+
rotation_range=40,
|
23 |
+
width_shift_range=0.2,
|
24 |
+
height_shift_range=0.2,
|
25 |
+
rescale=1./255,
|
26 |
+
shear_range=0.2,
|
27 |
+
zoom_range=0.2,
|
28 |
+
horizontal_flip=True,
|
29 |
+
fill_mode='nearest')
|
30 |
+
|
31 |
+
train_iterator = generator.flow_from_directory("C:/Users/Lyall Stewart/Documents/Coding/NeuralNetwork/COVID-19 Classification/data/train",
|
32 |
+
batch_size=batch,
|
33 |
+
color_mode='grayscale',
|
34 |
+
class_mode='sparse')
|
35 |
+
test_iterator = generator.flow_from_directory("C:/Users/Lyall Stewart/Documents/Coding/NeuralNetwork/COVID-19 Classification/data/test",
|
36 |
+
batch_size=batch,
|
37 |
+
color_mode='grayscale',
|
38 |
+
class_mode='sparse')
|
39 |
+
|
40 |
+
|
41 |
+
def design_model():
|
42 |
+
model = Sequential()
|
43 |
+
model.add(tf.keras.Input(shape=(256, 256, 1)))
|
44 |
+
|
45 |
+
model.add(tf.keras.layers.Conv2D(2, 5, strides=3, activation="relu"))
|
46 |
+
model.add(tf.keras.layers.MaxPooling2D(pool_size=(5, 5), strides=(5,5)))
|
47 |
+
model.add(tf.keras.layers.Conv2D(4, 3, strides=1, activation="relu"))
|
48 |
+
model.add(tf.keras.layers.MaxPooling2D(pool_size=(3,2), strides=(2,2)))
|
49 |
+
|
50 |
+
model.add(tf.keras.layers.Flatten())
|
51 |
+
#model.add(tf.keras.layers.Dense(8, activation="relu"))
|
52 |
+
#model.add(tf.keras.layers.Dropout(.20))
|
53 |
+
model.add(tf.keras.layers.Dense(4, activation='softmax'))
|
54 |
+
|
55 |
+
model.summary()
|
56 |
+
|
57 |
+
callback = tf.keras.callbacks.EarlyStopping(monitor='accuracy', patience=5, restore_best_weights=True, verbose=1)
|
58 |
+
|
59 |
+
print("Model designed")
|
60 |
+
return model, callback
|
61 |
+
|
62 |
+
|
63 |
+
model, es_callback = design_model()
|
64 |
+
|
65 |
+
model.compile(loss='sparse_categorical_crossentropy',
|
66 |
+
optimizer=keras.optimizers.Adam(learning_rate=0.01),
|
67 |
+
metrics=['accuracy'])
|
68 |
|
69 |
+
history = model.fit_generator(train_iterator,
|
70 |
+
epochs=50,
|
71 |
+
steps_per_epoch=50,
|
72 |
+
validation_data=test_iterator,
|
73 |
+
validation_steps=50,
|
74 |
+
callbacks=[es_callback],
|
75 |
+
verbose=1)
|
76 |
|
77 |
+
plt.plot(history.history['accuracy'])
|
78 |
+
plt.title('model accuracy')
|
79 |
+
plt.ylabel('accuracy')
|
80 |
+
plt.xlabel('epoch')
|
81 |
+
plt.legend(['train'], loc='upper left')
|
82 |
+
plt.show()
|
83 |
|
84 |
title = "Gradio Image Classifiction + Interpretation Example"
|
85 |
gr.Interface(
|