Update app.py
Browse files
app.py
CHANGED
@@ -38,35 +38,35 @@ def classify_image(inp):
|
|
38 |
class_mode='sparse')
|
39 |
|
40 |
|
41 |
-
def design_model():
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
#model.add(tf.keras.layers.Dense(8, activation="relu"))
|
52 |
#model.add(tf.keras.layers.Dropout(.20))
|
53 |
-
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
|
63 |
-
model, es_callback = design_model()
|
64 |
|
65 |
-
model.compile(loss='sparse_categorical_crossentropy',
|
66 |
optimizer=keras.optimizers.Adam(learning_rate=0.01),
|
67 |
metrics=['accuracy'])
|
68 |
|
69 |
-
history = model.fit_generator(train_iterator,
|
70 |
epochs=50,
|
71 |
steps_per_epoch=50,
|
72 |
validation_data=test_iterator,
|
@@ -74,12 +74,12 @@ history = model.fit_generator(train_iterator,
|
|
74 |
callbacks=[es_callback],
|
75 |
verbose=1)
|
76 |
|
77 |
-
plt.plot(history.history['accuracy'])
|
78 |
-
plt.title('model accuracy')
|
79 |
-
plt.ylabel('accuracy')
|
80 |
-
plt.xlabel('epoch')
|
81 |
-
plt.legend(['train'], loc='upper left')
|
82 |
-
plt.show()
|
83 |
|
84 |
title = "Gradio Image Classifiction + Interpretation Example"
|
85 |
gr.Interface(
|
|
|
38 |
class_mode='sparse')
|
39 |
|
40 |
|
41 |
+
def design_model():
|
42 |
+
model = Sequential()
|
43 |
+
model.add(tf.keras.Input(shape=(256, 256, 1)))
|
44 |
|
45 |
+
model.add(tf.keras.layers.Conv2D(2, 5, strides=3, activation="relu"))
|
46 |
+
model.add(tf.keras.layers.MaxPooling2D(pool_size=(5, 5), strides=(5,5)))
|
47 |
+
model.add(tf.keras.layers.Conv2D(4, 3, strides=1, activation="relu"))
|
48 |
+
model.add(tf.keras.layers.MaxPooling2D(pool_size=(3,2), strides=(2,2)))
|
49 |
|
50 |
+
model.add(tf.keras.layers.Flatten())
|
51 |
#model.add(tf.keras.layers.Dense(8, activation="relu"))
|
52 |
#model.add(tf.keras.layers.Dropout(.20))
|
53 |
+
model.add(tf.keras.layers.Dense(4, activation='softmax'))
|
54 |
|
55 |
+
model.summary()
|
56 |
|
57 |
+
callback = tf.keras.callbacks.EarlyStopping(monitor='accuracy', patience=5, restore_best_weights=True, verbose=1)
|
58 |
|
59 |
+
print("Model designed")
|
60 |
+
return model, callback
|
61 |
|
62 |
|
63 |
+
model, es_callback = design_model()
|
64 |
|
65 |
+
model.compile(loss='sparse_categorical_crossentropy',
|
66 |
optimizer=keras.optimizers.Adam(learning_rate=0.01),
|
67 |
metrics=['accuracy'])
|
68 |
|
69 |
+
history = model.fit_generator(train_iterator,
|
70 |
epochs=50,
|
71 |
steps_per_epoch=50,
|
72 |
validation_data=test_iterator,
|
|
|
74 |
callbacks=[es_callback],
|
75 |
verbose=1)
|
76 |
|
77 |
+
plt.plot(history.history['accuracy'])
|
78 |
+
plt.title('model accuracy')
|
79 |
+
plt.ylabel('accuracy')
|
80 |
+
plt.xlabel('epoch')
|
81 |
+
plt.legend(['train'], loc='upper left')
|
82 |
+
plt.show()
|
83 |
|
84 |
title = "Gradio Image Classifiction + Interpretation Example"
|
85 |
gr.Interface(
|