Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
pminervini
commited on
Commit
·
40ac231
1
Parent(s):
4e10b3e
update
Browse files- fix-requests-cli.py +1 -1
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +7 -77
- submit-cli.py +31 -17
fix-requests-cli.py
CHANGED
@@ -41,7 +41,7 @@ for path in json_files:
|
|
41 |
data["model_type"] = "fine-tuned"
|
42 |
to_overwrite = True
|
43 |
|
44 |
-
is_instruction_tuned = '
|
45 |
if is_instruction_tuned:
|
46 |
data["model_type"] = "instruction-tuned"
|
47 |
to_overwrite = True
|
|
|
41 |
data["model_type"] = "fine-tuned"
|
42 |
to_overwrite = True
|
43 |
|
44 |
+
is_instruction_tuned = 'nstruct' in model_id
|
45 |
if is_instruction_tuned:
|
46 |
data["model_type"] = "instruction-tuned"
|
47 |
to_overwrite = True
|
src/display/utils.py
CHANGED
@@ -27,6 +27,7 @@ class Tasks(Enum):
|
|
27 |
triviaqa = Task("triviaqa", "em", "TriviaQA")
|
28 |
truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
|
29 |
truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
|
|
|
30 |
#truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
|
31 |
#truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
|
32 |
|
|
|
27 |
triviaqa = Task("triviaqa", "em", "TriviaQA")
|
28 |
truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
|
29 |
truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
|
30 |
+
halueval_qa = Task("halueval_qa", "em", "HaluEval QA")
|
31 |
#truthfulqa_mc1 = Task("truthfulqa_mc1", "acc", "TruthfulQA MC1")
|
32 |
#truthfulqa_mc2 = Task("truthfulqa_mc2", "acc", "TruthfulQA MC2")
|
33 |
|
src/leaderboard/read_evals.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import glob
|
2 |
import json
|
3 |
-
import math
|
4 |
import os
|
5 |
from dataclasses import dataclass
|
6 |
|
@@ -32,7 +31,7 @@ class EvalResult:
|
|
32 |
still_on_hub: bool = False
|
33 |
|
34 |
@staticmethod
|
35 |
-
def init_from_json_file(json_filepath):
|
36 |
"""Inits the result from the specific model result file"""
|
37 |
with open(json_filepath) as fp:
|
38 |
data = json.load(fp)
|
@@ -67,79 +66,13 @@ class EvalResult:
|
|
67 |
|
68 |
# Extract results available in this file (some results are split in several files)
|
69 |
results = {}
|
70 |
-
for task in Tasks:
|
71 |
-
task = task.value
|
72 |
-
|
73 |
-
def post_process_results(results: dict) -> dict:
|
74 |
-
# {'nq_open': {'em': 0.018005540166204988, 'em_stderr': 0.0022134216580395583}}
|
75 |
-
res_copy = results.copy()
|
76 |
-
|
77 |
-
for task_name in res_copy.keys():
|
78 |
-
entry_copy = results[task_name].copy()
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
entry_copy = results[task_name].copy()
|
85 |
|
86 |
-
|
87 |
-
if "," in k:
|
88 |
-
tokens = k.split(",")
|
89 |
-
results[task_name][tokens[0]] = v
|
90 |
-
|
91 |
-
return results
|
92 |
-
|
93 |
-
accs = np.array([v.get(task.metric, None) for k, v in post_process_results(data["results"]).items() if task.benchmark in k])
|
94 |
-
|
95 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
96 |
-
continue
|
97 |
-
|
98 |
-
mean_acc = np.mean(accs) * 100.0
|
99 |
-
results[task.benchmark] = mean_acc
|
100 |
-
|
101 |
-
return EvalResult(eval_name=result_key, full_model=full_model, org=org, model=model, results=results,
|
102 |
-
precision=precision, revision=config.get("model_sha", ""), still_on_hub=still_on_hub,
|
103 |
-
architecture=architecture)
|
104 |
-
|
105 |
-
@staticmethod
|
106 |
-
def init_from_json_file_backend(json_filepath):
|
107 |
-
"""Inits the result from the specific model result file"""
|
108 |
-
with open(json_filepath) as fp:
|
109 |
-
data = json.load(fp)
|
110 |
-
|
111 |
-
# We manage the legacy config format
|
112 |
-
config = data.get("config", data.get("config_general", None))
|
113 |
-
|
114 |
-
# Precision
|
115 |
-
precision = Precision.from_str(config.get("model_dtype"))
|
116 |
-
|
117 |
-
# Get model and org
|
118 |
-
org_and_model = config.get("model_name", config.get("model_args", None))
|
119 |
-
org_and_model = org_and_model.split("/", 1)
|
120 |
-
|
121 |
-
if len(org_and_model) == 1:
|
122 |
-
org = None
|
123 |
-
model = org_and_model[0]
|
124 |
-
result_key = f"{model}_{precision.value.name}"
|
125 |
-
else:
|
126 |
-
org = org_and_model[0]
|
127 |
-
model = org_and_model[1]
|
128 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
129 |
-
full_model = "/".join(org_and_model)
|
130 |
-
|
131 |
-
still_on_hub, error, model_config = \
|
132 |
-
is_model_on_hub(full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False)
|
133 |
-
architecture = "?"
|
134 |
-
if model_config is not None:
|
135 |
-
architectures = getattr(model_config, "architectures", None)
|
136 |
-
if architectures:
|
137 |
-
architecture = ";".join(architectures)
|
138 |
-
|
139 |
-
# Extract results available in this file (some results are split in several files)
|
140 |
-
results = {}
|
141 |
-
from src.backend.envs import Tasks as BackendTasks
|
142 |
-
for task in BackendTasks:
|
143 |
task = task.value
|
144 |
|
145 |
def post_process_results(results: dict) -> dict:
|
@@ -267,10 +200,7 @@ def get_raw_eval_results(results_path: str, requests_path: str, is_backend: bool
|
|
267 |
eval_results = {}
|
268 |
for model_result_filepath in model_result_filepaths:
|
269 |
# Creation of result
|
270 |
-
|
271 |
-
eval_result = EvalResult.init_from_json_file_backend(model_result_filepath)
|
272 |
-
else:
|
273 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
274 |
eval_result.update_with_request_file(requests_path)
|
275 |
|
276 |
# Store results of same eval together
|
|
|
1 |
import glob
|
2 |
import json
|
|
|
3 |
import os
|
4 |
from dataclasses import dataclass
|
5 |
|
|
|
31 |
still_on_hub: bool = False
|
32 |
|
33 |
@staticmethod
|
34 |
+
def init_from_json_file(json_filepath, is_backend: bool = False):
|
35 |
"""Inits the result from the specific model result file"""
|
36 |
with open(json_filepath) as fp:
|
37 |
data = json.load(fp)
|
|
|
66 |
|
67 |
# Extract results available in this file (some results are split in several files)
|
68 |
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
task_iterator = Tasks
|
71 |
+
if is_backend is True:
|
72 |
+
from src.backend.envs import Tasks as BackendTasks
|
73 |
+
task_iterator = BackendTasks
|
|
|
74 |
|
75 |
+
for task in task_iterator:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
task = task.value
|
77 |
|
78 |
def post_process_results(results: dict) -> dict:
|
|
|
200 |
eval_results = {}
|
201 |
for model_result_filepath in model_result_filepaths:
|
202 |
# Creation of result
|
203 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath, is_backend=is_backend)
|
|
|
|
|
|
|
204 |
eval_result.update_with_request_file(requests_path)
|
205 |
|
206 |
# Store results of same eval together
|
submit-cli.py
CHANGED
@@ -2,12 +2,18 @@
|
|
2 |
|
3 |
import json
|
4 |
import os
|
|
|
5 |
|
6 |
from datetime import datetime, timezone
|
7 |
|
8 |
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO
|
9 |
from src.submission.check_validity import already_submitted_models, get_model_size, is_model_on_hub
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def add_new_eval(model: str, base_model: str, revision: str, precision: str, private: bool, weight_type: str, model_type: str):
|
13 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
@@ -118,32 +124,40 @@ def main():
|
|
118 |
|
119 |
filtered_model_lst = sorted([m for m in model_lst if custom_filter(m)], key=lambda m: m.downloads, reverse=True)
|
120 |
|
121 |
-
|
122 |
-
model = filtered_model_lst[i]
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
from src.backend.manage_requests import get_eval_requests
|
129 |
-
from src.backend.manage_requests import EvalRequest
|
130 |
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
FINISHED_STATUS = "FINISHED"
|
136 |
-
FAILED_STATUS = "FAILED"
|
137 |
|
138 |
-
|
139 |
|
140 |
-
|
141 |
-
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
if model.id not in requested_model_names:
|
146 |
-
|
|
|
|
|
|
|
147 |
else:
|
148 |
print(f'Model {model.id} already added, not adding it to the queue again.')
|
149 |
|
|
|
2 |
|
3 |
import json
|
4 |
import os
|
5 |
+
import time
|
6 |
|
7 |
from datetime import datetime, timezone
|
8 |
|
9 |
from src.envs import API, EVAL_REQUESTS_PATH, H4_TOKEN, QUEUE_REPO
|
10 |
from src.submission.check_validity import already_submitted_models, get_model_size, is_model_on_hub
|
11 |
|
12 |
+
from huggingface_hub import snapshot_download
|
13 |
+
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND
|
14 |
+
from src.backend.manage_requests import get_eval_requests
|
15 |
+
from src.backend.manage_requests import EvalRequest
|
16 |
+
|
17 |
|
18 |
def add_new_eval(model: str, base_model: str, revision: str, precision: str, private: bool, weight_type: str, model_type: str):
|
19 |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
|
|
124 |
|
125 |
filtered_model_lst = sorted([m for m in model_lst if custom_filter(m)], key=lambda m: m.downloads, reverse=True)
|
126 |
|
127 |
+
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
|
|
128 |
|
129 |
+
PENDING_STATUS = "PENDING"
|
130 |
+
RUNNING_STATUS = "RUNNING"
|
131 |
+
FINISHED_STATUS = "FINISHED"
|
132 |
+
FAILED_STATUS = "FAILED"
|
133 |
+
|
134 |
+
status = [PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS]
|
135 |
|
136 |
+
# Get all eval requests
|
137 |
+
eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
|
|
|
|
138 |
|
139 |
+
requested_model_names = {e.model for e in eval_requests}
|
140 |
|
141 |
+
for i in range(min(200, len(filtered_model_lst))):
|
142 |
+
model = filtered_model_lst[i]
|
|
|
|
|
143 |
|
144 |
+
print(f'Considering {model.id} ..')
|
145 |
|
146 |
+
is_finetuned = any(tag.startswith('base_model:') for tag in model.tags)
|
|
|
147 |
|
148 |
+
model_type = 'pretrained'
|
149 |
+
if is_finetuned:
|
150 |
+
model_type = "fine-tuned"
|
151 |
+
|
152 |
+
is_instruction_tuned = 'nstruct' in model.id
|
153 |
+
if is_instruction_tuned:
|
154 |
+
model_type = "instruction-tuned"
|
155 |
|
156 |
if model.id not in requested_model_names:
|
157 |
+
|
158 |
+
if 'mage' not in model.id:
|
159 |
+
add_new_eval(model=model.id, base_model='', revision='main', precision='float32', private=False, weight_type='Original', model_type=model_type)
|
160 |
+
time.sleep(60)
|
161 |
else:
|
162 |
print(f'Model {model.id} already added, not adding it to the queue again.')
|
163 |
|