leaderboard / backend-cli.py
pminervini's picture
update
9fbeaa1
raw
history blame
7.2 kB
#!/usr/bin/env python
import os
import json
from datetime import datetime
from huggingface_hub import snapshot_download
from src.backend.run_eval_suite import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
from src.backend.sort_queue import sort_models_by_priority
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
from src.backend.manage_requests import EvalRequest
from src.leaderboard.read_evals import EvalResult
from src.envs import QUEUE_REPO, RESULTS_REPO, API
import logging
import pprint
logging.getLogger("openai").setLevel(logging.WARNING)
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
TASKS_HARNESS = [task.value for task in Tasks]
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
def sanity_checks():
print(f'Device: {DEVICE}')
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND)
return
def request_to_result_name(request: EvalRequest) -> str:
# Request: EvalRequest(model='meta-llama/Llama-2-13b-hf', private=False, status='FINISHED',
# json_filepath='./eval-queue-bk/meta-llama/Llama-2-13b-hf_eval_request_False_False_False.json',
# weight_type='Original', model_type='pretrained', precision='float32', base_model='', revision='main',
# submitted_time='2023-09-09T10:52:17Z', likes=389, params=13.016, license='?')
#
# EvalResult(eval_name='meta-llama_Llama-2-13b-hf_float32', full_model='meta-llama/Llama-2-13b-hf',
# org='meta-llama', model='Llama-2-13b-hf', revision='main',
# results={'nq_open': 33.739612188365655, 'triviaqa': 74.12505572893447},
# precision=<Precision.float32: ModelDetails(name='float32', symbol='')>,
# model_type=<ModelType.PT: ModelDetails(name='pretrained', symbol='🟢')>,
# weight_type=<WeightType.Original: ModelDetails(name='Original', symbol='')>,
# architecture='LlamaForCausalLM', license='?', likes=389, num_params=13.016, date='2023-09-09T10:52:17Z', still_on_hub=True)
#
org_and_model = request.model.split("/", 1)
if len(org_and_model) == 1:
model = org_and_model[0]
res = f"{model}_{request.precision}"
else:
org = org_and_model[0]
model = org_and_model[1]
res = f"{org}_{model}_{request.precision}"
return res
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot,
batch_size=1, device=DEVICE, use_cache=None, limit=LIMIT)
dumped = json.dumps(results, indent=2)
print(dumped)
output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
repo_id=RESULTS_REPO, repo_type="dataset")
return results
def process_finished_requests() -> bool:
sanity_checks()
current_finished_status = [FINISHED_STATUS]
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
import random
random.shuffle(eval_requests)
from src.leaderboard.read_evals import get_raw_eval_results
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND)
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
result_name_to_result = {r.eval_name: r for r in eval_results}
for eval_request in eval_requests:
result_name: str = request_to_result_name(eval_request)
# Check the corresponding result
from typing import Optional
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
for task in TASKS_HARNESS:
task_name = task.benchmark
if eval_result is None or task_name not in eval_result.results:
eval_request: EvalRequest = result_name_to_request[result_name]
set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND)
results = process_evaluation(task, eval_request)
set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND)
return True
return False
def process_pending_requests() -> bool:
sanity_checks()
current_pending_status = [PENDING_STATUS]
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
import random
random.shuffle(eval_requests)
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return False
eval_request = eval_requests[0]
pp.pprint(eval_request)
set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND)
for task in TASKS_HARNESS:
results = process_evaluation(task, eval_request)
set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH_BACKEND)
return True
if __name__ == "__main__":
res = process_pending_requests()
if res is False:
res = process_finished_requests()