Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import json | |
import glob | |
from tqdm import tqdm | |
from huggingface_hub import HfApi, snapshot_download | |
from src.backend.manage_requests import EvalRequest | |
from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND_SYNC | |
from src.envs import QUEUE_REPO, API | |
from src.envs import EVAL_REQUESTS_PATH_OPEN_LLM, QUEUE_REPO_OPEN_LLM | |
from src.utils import my_snapshot_download | |
def my_set_eval_request(api, json_filepath, hf_repo, local_dir): | |
for i in range(10): | |
try: | |
set_eval_request(api=api, json_filepath=json_filepath, hf_repo=hf_repo, local_dir=local_dir) | |
return | |
except Exception: | |
time.sleep(60) | |
return | |
def set_eval_request(api: HfApi, json_filepath: str, hf_repo: str, local_dir: str): | |
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)""" | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
with open(json_filepath, "w") as f: | |
f.write(json.dumps(data)) | |
api.upload_file(path_or_fileobj=json_filepath, path_in_repo=json_filepath.replace(local_dir, ""), | |
repo_id=hf_repo, repo_type="dataset") | |
def get_request_file_for_model(data, requests_path): | |
model_name = data["model"] | |
precision = data["precision"] | |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED and RUNNING""" | |
request_files = os.path.join( | |
requests_path, | |
f"{model_name}_eval_request_*.json", | |
) | |
request_files = glob.glob(request_files) | |
# Select correct request file (precision) | |
request_file = "" | |
request_files = sorted(request_files, reverse=True) | |
for tmp_request_file in request_files: | |
with open(tmp_request_file, "r") as f: | |
req_content = json.load(f) | |
if req_content["precision"] == precision.split(".")[-1]: | |
request_file = tmp_request_file | |
return request_file | |
def update_model_type(data, requests_path): | |
open_llm_request_file = get_request_file_for_model(data, requests_path) | |
try: | |
with open(open_llm_request_file, "r") as f: | |
open_llm_request = json.load(f) | |
data["model_type"] = open_llm_request["model_type"] | |
return True, data | |
except: | |
return False, data | |
def read_and_write_json_files(directory, requests_path_open_llm): | |
# Walk through the directory | |
for subdir, dirs, files in tqdm(os.walk(directory), desc="updating model type according to open llm leaderboard"): | |
for file in files: | |
# Check if the file is a JSON file | |
if file.endswith('.json'): | |
file_path = os.path.join(subdir, file) | |
# Open and read the JSON file | |
with open(file_path, 'r') as json_file: | |
data = json.load(json_file) | |
sucess, data = update_model_type(data, requests_path_open_llm) | |
if sucess: | |
with open(file_path, 'w') as json_file: | |
json.dump(data, json_file) | |
my_set_eval_request(api=API, json_filepath=file_path, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC) | |
if __name__ == "__main__": | |
my_snapshot_download(repo_id=QUEUE_REPO_OPEN_LLM, revision="main", local_dir=EVAL_REQUESTS_PATH_OPEN_LLM, repo_type="dataset", max_workers=60) | |
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND_SYNC, repo_type="dataset", max_workers=60) | |
read_and_write_json_files(EVAL_REQUESTS_PATH_BACKEND_SYNC, EVAL_REQUESTS_PATH_OPEN_LLM) |