ScribblePrompt / predictor.py
halleewong's picture
upgrade to gradio4
86e6672
raw
history blame
8.38 kB
import torch
import torch.nn.functional as F
from typing import Dict, Tuple, Optional
import network
class Predictor:
"""
Wrapper for ScribblePrompt Unet model
"""
def __init__(self, path: str, verbose: bool = False):
self.verbose = verbose
assert path.exists(), f"Checkpoint {path} does not exist"
self.path = path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.build_model()
self.load()
self.model.eval()
self.to_device()
def build_model(self):
"""
Build the model
"""
self.model = network.UNet(
in_channels = 5,
out_channels = 1,
features = [192, 192, 192, 192],
)
def load(self):
"""
Load the state of the model from a checkpoint file.
"""
with (self.path).open("rb") as f:
state = torch.load(f, map_location=self.device)
self.model.load_state_dict(state, strict=True)
if self.verbose:
print(
f"Loaded checkpoint from {self.path} to {self.device}"
)
def to_device(self):
"""
Move the model to cpu or gpu
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
def predict(self, prompts: Dict[str,any], img_features: Optional[torch.Tensor] = None, multimask_mode: bool = False):
"""
Make predictions!
Returns:
mask (torch.Tensor): H x W
img_features (torch.Tensor): B x 1 x H x W (for SAM models)
low_res_mask (torch.Tensor): B x 1 x H x W logits
"""
if self.verbose:
print("point_coords", prompts.get("point_coords", None))
print("point_labels", prompts.get("point_labels", None))
print("box", prompts.get("box", None))
print("img", prompts.get("img").shape, prompts.get("img").min(), prompts.get("img").max())
if prompts.get("scribble") is not None:
print("scribble", prompts.get("scribble", None).shape, prompts.get("scribble").min(), prompts.get("scribble").max())
original_shape = prompts.get('img').shape[-2:]
# Rescale to 128 x 128
prompts = rescale_inputs(prompts)
# Prepare inputs for ScribblePrompt unet (1 x 5 x 128 x 128)
x = prepare_inputs(prompts).float()
with torch.no_grad():
yhat = self.model(x.to(self.device)).cpu()
mask = torch.sigmoid(yhat)
# Resize for app resolution
mask = F.interpolate(mask, size=original_shape, mode='bilinear').squeeze()
# mask: H x W, yhat: 1 x 1 x H x W
return mask, None, yhat
# -----------------------------------------------------------------------------
# Prepare inputs
# -----------------------------------------------------------------------------
def rescale_inputs(inputs: Dict[str,any], res=128):
"""
Rescale the inputs
"""
h,w = inputs['img'].shape[-2:]
if h != res or w != res:
inputs.update(dict(
img = F.interpolate(inputs['img'], size=(res,res), mode='bilinear')
))
if inputs.get('scribble') is not None:
inputs.update({
'scribble': F.interpolate(inputs['scribble'], size=(res,res), mode='bilinear')
})
if inputs.get("box") is not None:
boxes = inputs.get("box").clone()
coords = boxes.reshape(-1, 2, 2)
coords[..., 0] = coords[..., 0] * (res / w)
coords[..., 1] = coords[..., 1] * (res / h)
inputs.update({'box': coords.reshape(1, -1, 4).int()})
if inputs.get("point_coords") is not None:
coords = inputs.get("point_coords").clone()
coords[..., 0] = coords[..., 0] * (res / w)
coords[..., 1] = coords[..., 1] * (res / h)
inputs.update({'point_coords': coords.int()})
return inputs
def prepare_inputs(inputs: Dict[str,torch.Tensor], device = None) -> torch.Tensor:
"""
Prepare inputs for ScribblePrompt Unet
Returns:
x (torch.Tensor): B x 5 x H x W
"""
img = inputs['img']
if device is None:
device = img.device
img = img.to(device)
shape = tuple(img.shape[-2:])
if inputs.get("box") is not None:
# Embed bounding box
# Input: B x 1 x 4
# Output: B x 1 x H x W
box_embed = bbox_shaded(inputs['box'], shape=shape, device=device)
else:
box_embed = torch.zeros(img.shape, device=device)
if inputs.get("point_coords") is not None:
# Encode points
# B x 2 x H x W
scribble_click_embed = click_onehot(inputs['point_coords'], inputs['point_labels'], shape=shape)
else:
scribble_click_embed = torch.zeros((img.shape[0], 2) + shape, device=device)
if inputs.get("scribble") is not None:
# Combine scribbles with click encoding
# B x 2 x H x W
scribble_click_embed = torch.clamp(scribble_click_embed + inputs.get('scribble'), min=0.0, max=1.0)
if inputs.get('mask_input') is not None:
# Previous prediction
mask_input = inputs['mask_input']
else:
# Initialize empty channel for mask input
mask_input = torch.zeros(img.shape, device=img.device)
x = torch.cat((img, box_embed, scribble_click_embed, mask_input), dim=-3)
# B x 5 x H x W
return x
# -----------------------------------------------------------------------------
# Encode clicks and bounding boxes
# -----------------------------------------------------------------------------
def click_onehot(point_coords, point_labels, shape: Tuple[int,int] = (128,128), indexing='xy'):
"""
Represent clicks as two HxW binary masks (one for positive clicks and one for negative)
with 1 at the click locations and 0 otherwise
Args:
point_coords (torch.Tensor): BxNx2 tensor of xy coordinates
point_labels (torch.Tensor): BxN tensor of labels (0 or 1)
shape (tuple): output shape
Returns:
embed (torch.Tensor): Bx2xHxW tensor
"""
assert indexing in ['xy','uv'], f"Invalid indexing: {indexing}"
assert len(point_coords.shape) == 3, "point_coords must be BxNx2"
assert point_coords.shape[-1] == 2, "point_coords must be BxNx2"
assert point_labels.shape[-1] == point_coords.shape[1], "point_labels must be BxN"
assert len(shape)==2, f"shape must be 2D: {shape}"
device = point_coords.device
batch_size = point_coords.shape[0]
n_points = point_coords.shape[1]
embed = torch.zeros((batch_size,2)+shape, device=device)
labels = point_labels.flatten().float()
idx_coords = torch.cat((
torch.arange(batch_size, device=device).reshape(-1,1).repeat(1,n_points)[...,None],
point_coords
), axis=2).reshape(-1,3)
if indexing=='xy':
embed[ idx_coords[:,0], 0, idx_coords[:,2], idx_coords[:,1] ] = labels
embed[ idx_coords[:,0], 1, idx_coords[:,2], idx_coords[:,1] ] = 1.0-labels
else:
embed[ idx_coords[:,0], 0, idx_coords[:,1], idx_coords[:,2] ] = labels
embed[ idx_coords[:,0], 1, idx_coords[:,1], idx_coords[:,2] ] = 1.0-labels
return embed
def bbox_shaded(boxes, shape: Tuple[int,int] = (128,128), device='cpu'):
"""
Represent bounding boxes as a binary mask with 1 inside boxes and 0 otherwise
Args:
boxes (torch.Tensor): Bx1x4 [x1, y1, x2, y2]
Returns:
bbox_embed (torch.Tesor): Bx1xHxW according to shape
"""
assert len(shape)==2, "shape must be 2D"
if isinstance(boxes, torch.Tensor):
boxes = boxes.int().cpu().numpy()
batch_size = boxes.shape[0]
n_boxes = boxes.shape[1]
bbox_embed = torch.zeros((batch_size,1)+tuple(shape), device=device, dtype=torch.float32)
if boxes is not None:
for i in range(batch_size):
for j in range(n_boxes):
x1, y1, x2, y2 = boxes[i,j,:]
x_min = min(x1,x2)
x_max = max(x1,x2)
y_min = min(y1,y2)
y_max = max(y1,y2)
bbox_embed[ i, 0, y_min:y_max, x_min:x_max ] = 1.0
return bbox_embed